PROCESS IDENTIFICATION
AND PID CONTROL

Su Whan Sung
Jietae Lee

Kyungpook National University, Republic of Korea

In-Beum Lee
Pohang University of Science and Technology, Republic of Korea

¢ IEEE

IEEE PRESS
|EEE Communications Society, Sponsor

John Wiley & Sons (Asia) Pte Ltd

PROCESS IDENTIFICATION
AND PID CONTROL

PROCESS IDENTIFICATION
AND PID CONTROL

Su Whan Sung
Jietae Lee

Kyungpook National University, Republic of Korea

In-Beum Lee
Pohang University of Science and Technology, Republic of Korea

¢ IEEE

IEEE PRESS
|EEE Communications Society, Sponsor

John Wiley & Sons (Asia) Pte Ltd

Copyright © 2009 John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, # 02-01,
Singapore 129809

Visit our Home Page on www.wiley.com

MATLAB® and Simulink®™ are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® and
Simulink® software or related products does not constitute endorsement or sponsorship by The MathWorks of a
particular pedagogical approach or particular use of the MATLAB® and Simulink®™ software.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except
as expressly permitted by law, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for

permission should be addressed to the Publisher, John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01,
Singapore 129809, tel: 65-64632400, fax: 65-64646912, email: enquiry @wiley.com.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All
trademarks referred to in the text of this publication are the property of their respective owners.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstrasse 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons Canada Ltd, 5353 Dundas Street West, Suite 400, Toronto, ONT, M9B 6HS8, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Sung, Su Whan.
Process identification and PID control / Su Whan Sung, Jietae Lee, In-Beum Lee.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-82410-8 (cloth)
1. Process control. 2. System identification. 3. PID controllers. I. Lee, Jietae. II. Lee, In, 1958- III. Title.
TS156.8.P7585 2009
629.8—dc22
2009001953

ISBN 978-0-470-82410-8 (HB)

Typeset in 10/12pt Times by Thomson Digital, Noida, India.

Printed and bound in Singapore by Markono Print Media Pte Ltd, Singapore.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two
trees are planted for each one used for paper production.

www.wiley.com

To our wives and children

Contents

Preface
Part One Basics of Process Dynamics

1 Mathematical Representations of Linear Processes
1.1 Introduction to Process Control and Identification
1.2 Properties of Linear Processes
1.3 Laplace Transform
1.4 Transfer Function and State-Space Systems
Problems

2 Simulations
2.1 Simulating Processes Composed of Differential Equations
2.2 Simulating Processes Including Time Delay
2.3 Simulating Closed-Loop Control Systems
2.4 Useful Numerical Analysis Methods
Problems

3 Dynamic Behavior of Linear Processes
3.1 Low-Order Plus Time-Delay Processes
3.2 Process Reaction Curve Method
3.3 Poles and Zeroes
3.4 Block Diagram
3.5 Frequency Responses
Problems

Part Two Process Control

4 Proportional-Integral-Derivative Control
4.1 Structure of Proportional-Integral-Derivative Controllers
and Implementation in Computers/Microprocessors
4.2 Roles of Three Parts of Proportional-Integral-Derivative Controllers
4.3 Integral Windup

xi

45
45
50
57
59
74

79
79
84
86
92
94
103

109
111
111

122
129

viii

Contents

4.4 Commercial Proportional-Integral-Derivative Controllers
Problems

Proportional-Integral-Derivative Controller Tuning
5.1 Trial-and-Error Tuning

5.2 Simple Process Identification Methods

5.3 Ziegler—Nichols Tuning Rule

5.4 Internal Model Control Tuning Rule

5.5 [Integral of the Time-Weighted Absolute Value of the Error Tunning Rule

for a First-Order Plus Time-Delay Model (ITAE-1)

5.6 Integral of the Time-Weighted Absolute Value of the Error Tunning Rule

for a Second-Order Plus Time-Delay Model (ITAE-2)

5.7 Optimal Gain Margin Tuning Rule for an Unstable Second-Order

Plus Time-Delay Model (OGM-unstable)

5.8 Model Reduction Method for Proportional-Integral-Derivative
Controller Tuning

5.9 Consideration of Modeling Errors

5.10 Concluding Remarks

Problems

Dynamic Behavior of Closed-Loop Control Systems

6.1 Closed-Loop Transfer Function and Characteristic Equation
6.2 Bode Stability Criterion

6.3 Nyquist Stability Criterion

6.4 Gain Margin and Phase Margin

Problems

Enhanced Control Strategies

7.1 Cascade Control

7.2 Time-Delay Compensators

7.3 Gain Scheduling

7.4 Proportional-Integral-Derivative Control using Internal
Feedback Loop

Problems

Part Three Process Identification

8

Process Identification Methods for Frequency Response Models
8.1 Fourier Series

8.2 Frequency Response Analysis and Autotuning

8.3 Describing Function Analysis

8.4 Fourier Analysis

8.5 Modified Fourier Transform

8.6 Frequency Response Analysis with Integrals

Problems

135
147

151
151
154
157
159

161

166

169

170
196
196
197

201
201
203
207
210
212

215
215
217
225

228
231

233

235
235
240
241
247
250
261
271

Contents

9 Process Identification Methods for Continuous-Time Differential
Equation Models
9.1 Identification Methods Using Integral Transforms
9.2 Prediction Error Identification Method
Problems

10 Process Identification Methods for Discrete-Time Difference

Equation Models

10.1 Prediction Model: Autoregressive Exogenous Input Model and
Output Error Model

10.2 Prediction Error Identification Method for the Autoregressive Exogenous
Input Model

10.3 Prediction Error Identification Method for the Output Error Model

10.4 Concluding Remarks

Problems

11 Model Conversion from Discrete-Time to Continuous-Time
Linear Models
11.1 Transfer Function of Discrete-Time Processes
11.2 Frequency Responses of Discrete-Time Processes
and Model Conversion
Problems

Part Four Process Activation

12 Relay Feedback Methods
12.1 Conventional Relay Feedback Methods
12.2 Relay Feedback Method to Reject Static Disturbances
12.3 Relay Feedback Method under Nonlinearity and Static
Disturbances
12.4 Relay Feedback Method for a Large Range of Operation
Problems

13 Modifications of Relay Feedback Methods
13.1 Process Activation Method Using Pulse Signals
13.2 Process Activation Method Using Sine Signals
Problems

Appendix Use of Virtual Control System
A.1 Setup of the Virtual Control System
A.2 Examples

Index

275
275
291
315

317

317

319
325
335
336

337
337

338
342

343

345
345
352

357
365
370

373
373
387
397

399
399
400

409

Preface

This book focuses on the basics of process control, process identification, PID controllers and
autotuning. Our objective is to enable students and engineers who are not familiar with these
topics to understand the basic concepts of feedback control, process identification, autotuning
and design of real feedback controllers (especially PID controllers).

Parts One and Two are aimed at undergraduate students who have not taken any courses on
process control. Parts Three and Four are appropriate for graduate students and control
engineers who want to design real feedback controllers or perform research on process
identification and autotuning. Parts One and Two introduce the basics of process control and
dynamics, the analysis tools (Bode plot, Nyquist plot) to characterize the dynamics of the
process, PID controllers and tuning, and advanced control strategies that have been widely used
in industry. Also, simple simulation techniques required for practical controller designs and
research on process identification and autotuning are also included. Part Three provides useful
process identification methods actually used in industry. It includes several important
identification algorithms to obtain frequency models or continuous-time/discrete-time transfer
function models from the measured process input and output data sets. Part Four introduces
various relay feedback methods to activate the process effectively for process identification and
controller autotuning.

We have tried to include as many examples as possible. In particular, the readers can use the
numerical examples and the MATLAB R codes with slight modifications to solve actual
problems in their processes or research. The codes (MATLAB Rm-files) and real-time virtual
processes for the simulations and practices are available from the Wiley website at www.wiley.
com/go/swsung. The codes will be useful to those who want to understand the actual
implementation techniques for control, process identification and autotuning. Also, the readers
can design their own controllers, implement them and confirm the performances in real time
using real-time virtual processes. Also, the problem-solving ability of students can be enhanced
by performing a controller design project on the basis of the virtual process. We welcome the
comments of students and instructors to improve the book and the materials for lectures and
simulations. Please visit our other website at http://pse.knu.ac.kr for comments and questions
about this book or process systems engineering. We hope this book is useful to you.

We wish to express special thanks to the students at KNU who provided the simulation
results and detailed reviews: Cheol Ho Je, Chun Ho Jeon and Yu Jin Cheon. We acknowledge

xii Preface

John Wiley & Sons, especially James Murphy, Roger Bullen, Sarah Abdul Karim and Peter
Lewis, for their effective cooperation and great care in preparing this book. We also gratefully
acknowledge the financial support by Kyungpook National University (KNU Research Fund,
2006).

Su Whan Sung
Jietae Lee
In-Beum Lee

Part One

Basics of Process
Dynamics

Part One introduces the basics of process dynamics which are appropriate for an undergraduate
course. Chapter 1 defines linear processes and discusses how to represent linear processes in a
mathematical way. Chapter 2 introduces several simulation and numerical analysis techniques
required to simulate/design process controllers. Chapter 3 discusses the dynamic behaviors of
linear processes and provides several analysis tools to characterize the dynamics of the control
system.

1

Mathematical Representations
of Linear Processes

1.1 Introduction to Process Control and Identification

The basic concepts and terms of process control and identification are first introduced.

1.1.1 Process Control

Process control consists of manipulating variables, controlled variables and processes. The
manipulating variables and the controlled variables usually correspond to the process inputs
and the process outputs respectively. The objective of process control is to make the process
outputs (controlled variables) behave in a desired way by adjusting the process inputs
(manipulating variables). Consider the temperature control system in Figure 1.1.

The SCR unit is to provide electrical power to the heating coil, which is proportional to the
voltage u(t). The temperature is measured by the thermocouple sensor. The objective of
the temperature control system in Figure 1.1 is to drive the temperature y(7) to the desired
value by adjusting u(z). So, u(?) and y(¢) are the process input (manipulating variable) and the
process output (controlled variable) respectively. The role of the feedback controller is to
determine u(f) appropriately on the basis of the measured y(#) to achieve the control
objective.

Example 1.1

Consider the control system in Figure 1.2. It consists of two tanks, a control valve, a DP cell and
a controller. The DP cell and the control valve are to measure the liquid level of the last tank and
adjust the inlet flow rate respectively. The objective of the control system is to drive the liquid
level of the last tank to a desired value. In this case, the manipulating variable is the inlet flow
rate and the controlled variable is the level of the last tank.

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

4 Process Identification and PID Control

heating coil process output
]
thermocouple y(h)

power | SCR unit +—u(t) process input

Figure 1.1 Temperature control system.

X
=)
o

_¢
controller
) ij

Figure 1.2 Level control system.

1.1.2 Process Identification

Process identification is the obtaining of a model of which the role is to predict the behavior of
the process output for a given process input. The models are in the form of differential equations
or frequency data sets (which will be explained later). From the energy balance equation for the
temperature control system in Figure 1.1, the model of the following simple differential
equation form can be derived:

Td}é—(tt) +y(t) = ku(r)+b (1.1)
where 7, k and b are known constants determined by the heat capacity, mass, amplification
coefficient, heat transfer coefficient, area and ambient temperature. This is a simple example of
process identification. The behavior of y(7) can be predicted by solving the differential equation
for a given u(¢). In this book, how to obtain the model from historical data of the process input
and the process output will be treated without considering physical principles such as material
balance, energy balance and chemical reactions. This kind of model is called a “black-box
model.”

Mathematical Representations of Linear Processes 5

Example 1.2
Assume that the black-box model structure for a given process has the following form:

Tdy—(t) +y(t) = ku(t) (1.2)
dr

And assume that y(¢#) =1 —exp(—2¢) is obtained from an experiment when u(f)=1 is
applied to the process. Then, it is straightforward to estimate the model parameters of 7 and k&
from the experiment. Replace y(#) and u(¢) in (1.2) by y(#) = 1 — exp(—2¢) and u(¢) = 1. Then,
(1.2) becomes (27 — 1) exp(—2¢) + 1 =k. So, 7=0.5 and k=1 is obtained. This is a simple
example of parameter estimation. The determination of the model structure and the parameter
estimation are the core parts of process identification.

Example 1.3
Assume that the black-box model structure for a given process has the following form:

P2 Syt = k) (13)

And assume that y(¢) = 0.5 sin(¢# — 77/2) is obtained from an experiment when u(#) = sin(¢) is
applied to the process. Estimate the model parameters 7 and k from the experiment.

Solution Replace y(¢) and u(¢) in (1.3) by y(¢) = 0.5 sin(z — 7/2) and u(¢) = sin(¢). Then, (1.3)
becomes

—0.57%sin(t — 7/2) 4 7cos(t — 7/2) 4 0.5sin(t — 7/2) = k sin()

which can be rewritten as (0.57'2 —0.5) cos(t) + 7sin(tr) = ksin(¢) because sin(t — 7/2) =
—cos(?) and cos(t — 7/2) =sin(#). So, 7=1.0 and k=1 is obtained.

1.1.3 Steady State

When all the derivatives of the process input and process output are zero, this is called the
steady state. For example, the process (1.4) will be (1.5) at steady state:

§ u
ddy,(zt) +2d{T(;) +y(1) = dd(tt) +2u(t) +2 (1.4)
dzﬁs:z(o +2dy:;t(l) +)755(t) = du;—sz(t) +2uss(t) —|—2—>yss([) = zuss([) +2 (1_5)

where the subscript ‘ss’ denotes steady state. As shown in (1.5), all the derivatives go to zeroes
at steady state. On the other hand, a cyclic steady state means that the process output and input
are periodic signals.

6 Process Identification and PID Control

Example 1.4
Consider the process input u(7) and the process output y(7) in Figure 1.3. It can be seen that the
process is in steady state after 7= 8.

1.4¢
1.2}

1t

0.8}

=

<
0.6}

0.4

021

2.5

1.5}

u(f)

0.5

Figure 1.3 The process output and the process input of a control system.

Example 1.5
Obtain y(¢) for u(r) =2.0 at steady state for the following process:

du(t)
dr

% n d{d_(t’)(m +0.05u(t)) +y(t) =

0.2

Mathematical Representations of Linear Processes 7

Because all the derivatives are zero at steady state, yss(¢) = /s (). So, yss(f) = /2.0 for
ug(1) = 2.0 at steady state.

Example 1.6
Obtain y(¢) for ys(¢) = 1.0 at steady state for the following process:

&Ey(0) ,dy(0) du(r)

a2 27 +y(#) =0.1 W TE +u(t) (1.7)

u(t) = 1.5(5s(1) — (1)) +0'5W

(1.8)
Because all the derivatives in (1.7) are zero at steady state, ys(#) =uy(?) and uy=
1.5 (ys.ss — ¥ss) are obtained from (1.7) and (1.8). So, y(f) = 1.5/2.5 at steady state.

Example 1.7
Consider the process input u(¢) and the process output y(7) in Figure 1.4. It can be seen that the
process is in cyclic steady state after about # = 15 because u(#) and y(¢) are periodic after t = 15.

1.1.4 Deviation Variables

The deviation variable X () is the difference between the original variable x(¢) and a reference
value x,er. That is, X(¢) = x(¢) — xy,r. So, it represents how far the original variable deviates
from the reference value. The deviation variables for the process output and process input can
be defined like y(¢) = y(#) — yrer and %(t) = u(t) — uy respectively. Here, yyr and ur are
usually the process output and the process input at steady state if there is no special notice. Note,
Vet 18 automatically fixed for the given u,.¢ at steady state. For example, the process (1.4) can be
rewritten using deviation variables by subtracting (1.5) from (1.4):

&) (@)
a2 +2T+y(l‘)—

du(r)
Sdr

+2u(1) (1.9)

)_}(t) - y([) — Vssy 77[([) - u(t) — Uss (110)

where #(?) and y(¢) are deviation variables. u and yg, are the reference values for u(¢) and y(f)
respectively. Here, ug, and yy should satisfy (1.5). So, y is automatically fixed for the given ug
at steady state.

Example 1.8
Rewrite the following process with deviation variables when the reference value for the process
input u(t) is chosen as 2.0.

du(t)

E3() L0 b0 dl

dr dr? dr

+3u(?) (1.11)

+y(t)+1=2

8 Process Identification and PID Control

(@)
1 i
0.5} R
g o :
-0.5 R
1t
0 5 10 15 20
t
(b)

Figure 1.4 The process output and the process input of a relay feedback system.

Solution First, apply the steady-state assumption to (1.11):

dS)’SS(I) dz)’ss(t)

dug (1)
a3 +3

dy (1
+3 ys‘()+yss(l)+1=2T+3uss(t) (1.12)

ds? dt

By subtracting (1.12) from (1.11), the following process described by the deviation variables
is obtained:

&) &) | L dy(r) du(1)
w Pae T Sdr
YO =y(t) —yss, u(t) = u(t) —uss (1.14)

+y(1) =2 +3u(r) (1.13)

Mathematical Representations of Linear Processes 9

Here, us, =2.0. From (1.11), it is known that y,, = 5.0 for u,, = 2.0 by applying the steady-
state assumption. So, the deviation variables (1.14) should be

y(it) =y(t)—5.0, u(t) =u(t)—2.0 (1.15)

Example 1.9
Rewrite the following process with deviation variables when the reference value for the process
input u(?) is chosen as 2.0:

Ey(r) |, dy(1) L dy()
ds 3 dr? +3 dt

du(r—0.5)
dr

+y()+1=2 +3u(t—0.5) (1.16)

First, apply the steady-state assumption to (1.16):

Pys(t) L dys(t) L dyss(2)
3 3
ds + dr? + dr

dug (1 —0.5)

Bug(t—0.5 1.17
= b 3ug(e-05) (117)

+ys(H)+1=2

By subtracting (1.17) from (1.16) the following process described by the deviation variables
is obtained:

3y %y y a(t—0.
ddyff) +3ddyt§’) +3df1(;) +3(1) = zw L3u(i-05) (L18)
)_)(Z) :y(l)_y557 ﬁ(l) = u(l)_uss (119)

From (1.16)ys =5.0 is obtained for ug =2.0 because ug(f) = us(t — 0.5) =2.0 at steady
state. So, the deviation variables (1.19) should be

y(it) =y(t)—=5.0, u(t) =u(t)—2.0 (1.20)

1.2 Properties of Linear Processes

Linear processes are defined and several important properties of linear processes are discussed.

1.2.1 Linear Process

When the dynamics of a process can be described by a linear combination of derivatives (d’y()/
de’, d-’u(t)/dlj ,J=0,1,2,...)of the process output y(¢) and the process input #(¢) and a constant,
itis alinear process. If the coefficients are time invariant (constants), then it is the time-invariant
linear process. If the coefficients are time variant, then it is the time-variant linear process. For
example, (1.4) is a linear process. But, the following processes are nonlinear:

2
DO DD 4y = 0 1) - (1.21)
DO | y(0) = a/a) (1.22)

10 Process Identification and PID Control

Equations (1.21) and (1.22) are nonlinear because of the (du(z)/df)u(?) and \/u(t) terms
respectively.

Example 1.10
Consider the following process:
dy(?)

ddyt(zt) _|-2T +y(¢) = u(t—0.5) (1.23)

Here, it should be noted that

(—0.5) d'u(r)
il

i! de

u(t—0.5) = u(t) + i:
i=1

(which will be discussed later). So, (1.23) is a time-invariant linear process. That is, linear
processes can include time delays.

Example 1.11
Consider the following process:

&y() | dy(0)

ap T2g, Ty =u(t=0.5) (1.24)
u(r) = 0.5 J:)(l —y(T))dT+0.lw (1.25)

In Example 1.11, it is revealed that the time delay does not change the linearity. Also, by
differentiating (1.24) and (1.25), the integral in (1.25) then disappears. So, (1.24) and (1.25) is a
time-invariant linear process.

Example 1.12
Consider the process

&y(r) | dy(0) _
a2 +2d—t +y(t) =u(t—0.5) (1.26)
u(t) = 2(ys(t) — (1)) (1.27)
From (1.26) and (1.27), the following process is obtained:
2
ddyf;) +2d{d—(;) (1) = 2[ys(t — 0.5) — (1 — 0.5)] (1.28)

So, the process (1.28) of which the input and output are y(?) and y(?) is a time-invariant
linear process.

Mathematical Representations of Linear Processes 11

Example 1.13
Consider the process

d?y(1)
ds?

+(240.17) dyd—(tl) +(1-0.05¢)y(¢) = (24 0.30)u(z) (1.29)

in which the coefficients are time variant. Thus, this is a time-variant linear process.

1.2.2 Superposition Rule

Suppose that the process input is a linear combination of several signals. Then, the process
output is the linear combination of the respective process outputs for the several signals if
the process is linear. For example, the process output y(?) for the process input u(#) = u;(¢) +
0.3u5(?) + 1.3u3(?) can be obtained without a plant test from the available information that the
process is linear and the process outputs y;(¢), y»(¢) and y3(¢) are the responses of the process to
the process inputs u, (), u,(t) and u5(¢) respectively. That is, it is clear that the process output is
y(&) =y1(t) + 03y,(r) + 1.3y3(7) for the given process input u(z) by the superposition rule
(Figure 1.5).

uy(f) y1(h)
——» Process

—>
(1) Ya(D) |:>
———» Processs ——»
ya(f)

us(1)

—— > Process ——»

) U]
— » Process —»
1) = ug(f) + 0.3ux(f) + 1.3us(f)

B = y(t) + 0.3yx(f) + 1.3y5(1)

u

1t
u(
b

Figure 1.5 Superposition principle.

Therefore, if the pairs (¢41(2), y1(£)), (ux(2), y2(1)), (u3(t), y3(¢)), . . . for the given linear process
are known, then y(#) can be easily calculated corresponding to any u(?) of a linear combination

ul(t), uz(l), u3(l), cee

Example 1.14
Obtain the process output y(0.0), y(0.1), y(0.2), y(0.3) of a linear process for the following
process input u(?):

u(t)=2 fort>0, u(t)=0 forz<0 (1.30)

The available information is that the responses of the process to the process input u(f) = 1
for ¢t >0, u;(#) =0 for <0 are y;(0.0) = 0.0, y,(0.1) = 0.01, y;(0.2) = 0.02 and y,(0.3) = 0.04.

Solution Note that u(t)=2u;(¢). Then, y(f)=2y,(f) by the superposition rule. So,
¥(0.0) =0.0, y(0.1) =0.02, y(0.2) =0.04 and y(0.3) =0.08 are obtained.

12 Process Identification and PID Control

Example 1.15
Obtain the process output y(0.0), ¥(0.1), y(0.2), y(0.3) of a linear process for the following
process input u(?):

u(t)y=1 fort>0.1, u(t)=2 for0<¢<0.1, u(t)=0 fort<0 (1.31)

The available information is that the responses of the process to the process input u;(¢) = 1
fort >0, u;(t) =0 for <0 are y;(0.0) = 0.0, y;(0.1) =0.01, y;(0.2) = 0.02 and y(0.3) =0.04,
and the responses for the process input u,(?) =1 for t > 0.1, u,(#) =0 for 1< 0.1 are y,(0.0) =
0.0, ¥5(0.1) =0.0, y,(0.2) =0.01 and y,(0.3) =0.02.

Solution Note that u(f) = 2u,(f) — u(t). Then, y(¢) = 2y(t) — y,(¢) by the superposition rule.
So, ¥(0.0)=0.0, y(0.1) =0.02, y(0.2) = 0.03 and y(0.3) =0.06 are obtained.

Example 1.16
Obtain the process output y(0.0), ¥(0.1), y(0.2), ¥(0.3) of a linear time-invariant process for the
following process input u(?):

u(t)=0 fort>0.1, u(t)=1 for0<¢<0.1, u(t)=0 fort<0 (1.32)

The available information is that the responses of the process to the process input u;(¢) =1
fort >0, u,(t)=0forz<0arey;(—0.1)=0.0, y,(0.0) =0.0, y;(0.1) = 0.01, y,(0.2) = 0.02 and
¥1(0.3)=0.04.

Solution Note that u(t) = u;(f) — u;(t — 0.1). Then, y(¢) = y;(¢) — y;(¢ — 0.1) by the superpo-
sition rule. So, y(0.0) =0.0, y(0.1) =0.01, y(0.2) =0.01 and y(0.3) =0.02 are obtained. This
example demonstrates how to obtain the impulse responses from the step responses.

Example 1.17
Obtain the process output y(0.0), ¥(0.1), ¥(0.2), y(0.3) of a linear time-invariant process for the
following process input u(?):

u(t) =3 for02<t, u(t)=4 for0.1 <1<0.2, u(t)=2
for0 <1<0.1, u(t)=0 forz<0 (1.33)

The available information is that the responses of the process to the process input u;(¢#) =0
for t>0.1, u(t)=1 for 0<¢<0.1, u;()=0 for <0 are y;(—0.2)=0.0, y;(—0.1)=0.0,
¥1(0.0)=0.0, y,(0.1)=0.01, y,(0.2) =0.03 and y,(0.3) =0.02.

Solution Note that u(t) =3u;(t — 0.2) + 4u,(t —0.1) 4+ 2u;(¢). Then, y(t) =3y,(t —0.2) +
4y,(t —0.1) + 2y,(?) by the superposition rule. So, ¥(0.0)=0.0, y(0.1)=0.02, y(0.2)=0.10
and y(0.3) = 0.19 are obtained. This example demonstrates how to calculate the process output
from the impulse responses of the process. This kind of model is called an “impulse response
model.”

Mathematical Representations of Linear Processes 13

Example 1.18

Obtain the process output y(#) of a linear process for the process input u(?) =3 sin(z) + 2
sin(3¢7). The available information is that the responses of the process to the process input
uy(t) =sin(¢) are y;(¢) = 0.3 sin(¢ — 0.1) and the responses of the process for the process input
u>(t) =sin(3¢) are y,(¢£) = 0.1 sin(3¢ — 0.2).

Solution Note that u(f) =3u(f) + 2uy(¢). Then, y(f) = 3y(¢) + 2y,(¢) by the superposition
rule. So, y(#) =0.9sin(z — 0.1) + 0.2sin(37 — 0.2) is obtained.

Example 1.19

Obtain the process output y(¢) of a linear time-invariant process for the process input u(¢) =
sin(?). The available information is that the responses of the process to the process input
u(1)=0.4sin(t —0.1) + 0.2sin(37 — 0.2) are y;(¢¥) = 0.3 sin(z — 0.2) + 0.1sin(3¢ — 0.4).

Solution y(t)=0.3sin(t —0.2) is obtained for u(f)=0.4sin(t—0.1) and, equivalently,
y(#) =3 sin(z — 0.1)/4 for u(¢) = sin(¢) from the given information and the superposition rule.
Also, y(t) =sin(37 — 0.2)/2 is the response to the process input u(f) = sin(3¢).

1.2.3 Linearization

It is notable that many nonlinear processes can be approximated effectively by linearized

models. Linearization is the process of obtaining a linear model to approximate the nonlinear

model. Taylor series are frequently used for linearization. Theoretically, a nonlinear function
f(u) can be represented by the following Taylor series:

df 1 d*f

fu) = fluo) +- (“—”0)+5W

U=ugy

3
o + 18

a0 (u—up)* + --- (1.34)

Uu=ugpy U=upy

The following approximation of (1.34) to (1.35) is called linearization at u = u:

4

S(u) = f(uo) +4-t - (u—wo) (1.35)

Uu=uoy

For example, the straight line in Figure 1.6 corresponds to (1.35), which is close to (1.34)
around u = u.

»
>

Ug u

Figure 1.6 Linearization of flu) at u=uy.

14 Process Identification and PID Control

Equation (1.22) can be approximated by the Taylor series at u(f) =uy=1 as follows:

dil(t> = 4/u(t) ~ 4\ﬁ+4 (u0) ~ " (u(t) — o) (1.36)

Equation (1.36) can be rewritten to the following linearized process:

dy(1)

L y(0) & 24l + 2(u0) (1) (1.37)

Equation (1.37) can be also described by the deviation variables:

dy(7)

50 =200) a0, 50 =30 -y @O =u)-ue (138)

Now, the linearized process (1.38) is obtained for the nonlinear process (1.22).
The Taylor series approximation can be also applied to multivariable nonlinear functions
such as f(u;, u,) as follows:

flur,uz) = f(u10,u20) +67f (1 —uip) +67f (U2 —uzp) (1.39)

Ou Ou
1 Up=uy0,U2=uz0 2 Up=uyp,U2=uUz0

Similarly, the Taylor series approximation can be applied to multivariable functions of which
the number of the variables is bigger than 2 in a straightforward manner.

Example 1.20
Obtain the linearized process around u(#) =uy=2 for the following nonlinear process, and
express it with the deviation variables:

()

i +y13(1) = (1) (1.40)

Solution Equation (1.40) becomes y (t) =u (t) at steady state. So, the value of the process
output y(¢) for u(t) =uy=21is yo = 2315 We obtain y'>(1) ~ 8 + 3(y(f) — 2¥"?) and 1’ (1) ~
8 + 12(u(f) —2) by the Taylor series approximation. Then, the linearized process is

d)c)li() F843(y(t) — 2¥15) = 8+ 12(u(t) — 2) (1.41)

Equation (1.41) is valid for the steady state. That is, the following equation is valid:

dyo(7)

5 T8+30 (1) = 23/13) = 8+ 12(up (1) — 2) (1.42)

So, the following linearized process represented by the deviation variables is obtained by
subtracting (1.42) from (1.41):

—= 4+ 3%(¢) = 12u(z) (1.43)

¥(1) = y(1) =281 a(t) = u(r) =2 (1.44)

Mathematical Representations of Linear Processes 15

Example 1.21
Obtain the linearized process around u(?) = uy =2 for the following nonlinear process, and
express it with the deviation variables:

dy(t

% +y()(1+0.1%(2)) = (1) (1.45)
Solution Equation (1.45) becomes y(¢)(1 + 0.1 uz(t)) = u3(l) at steady state. So, the value of
the process output y(?) for u(¢) = ug = 2 is yo = 8/1.4. The following equation is obtained by the
Taylor series approximation for the multivariable function y(#)(1 + 0.14%(0)):

Y(O)(14 0.1 (£)) = yo (1 4+ 0.123) + (1 4+ 0.12) (y(£) — vo) + 0-2y0uo (1(t) — up)
=8+ 1‘4(y(l‘) - 184> + %(u(t) —2) (1.46)

and 1>(£) ~ 8 + 12(u(t) —2) by the Taylor series approximation. Then, the linearized process
is as follows:
dy(7)

— T84 <y(t) - 18—4> + %(u(z) —2) =8+ 12(u(t) - 2) (1.47)

Equation (1.46) is valid for the steady state. That is, the following equation is valid:

dydo—gt) +8+ 1.4<yo(t) - %) + %(uo(t) —2) =8+ 12(up(t) - 2) (1.48)

So, the following linearized process represented by the deviation variables is obtained by
subtracting (1.48) from (1.47):

di—(;) + 14y(1) = <12 - %) (1) (1.49)
5(6) = y(t) —8/1.4, a(t) = u(t) -2 (1.50)

Example 1.22
Obtain the linearized process around u(?) = uy =2 for the following nonlinear process and
express it with the deviation variables:

2
DO 22D) 1001 2Dy = utr) (1.51)

Solution Equation (1.51) becomes y(¢) =u(t) at steady state. So, the value of the pro-
cess output y(7) for u(t) =ug="2 is yo="2 and the value of dy(?)/d¢ at steady state is zero.
So, the linearization should be done around uy=2, yo =2 and (dy(¢)/d?)o = 0. The following
equation is obtained by the Taylor series approximation for the multivariable function

16 Process Identification and PID Control

0.01(dy()/dt)u(?)y(¢). Here, dy(?)/d¢ should be considered one of the variables of the nonlinear
function 0.01(dy(¢)/dt)u(?)y(t). Also, 0(0.01(dy(?)/dt)u(t)y(t))/0u(t)=0 and 0(0.01(dy(t)/
doyu()y(1))/0y(t) =0 at steady state should be used.

0.01 d)(;—(tt)u(t)y(t) ~ 0.01uo (dyd(;) - 0) - 0.04dyd—(ll) (1.52)

Then, the linearized process is as follows:

% +2.o4d{d—(tl) +(0) = u(0) (1.53)

Equation (1.53) is valid for the steady state. That is, the following equation is valid:

dzg;g(’) + 2.04dy§—§l) +yo(t) = uo(2) (1.54)

So, the following linearized process represented by the deviation variables is obtained by
subtracting (1.54) from (1.53):

d?tg’) + 2‘04‘%’) +3(0) = a(t) (1.55)
y() =y(t) =2, u(t) =u(t)—2 (1.56)

1.3 Laplace Transform

The Laplace transform plays an important role in analyzing/designing the control system. In
this section, the definition of the Laplace transform is introduced. Also how to obtain the
Laplace transforms for various functions and how to solve differential equations using the
Laplace transform are explained.

1.3.1 Laplace Transforms, Inverse Laplace Transforms

The Laplace transform of f(¢) is defined as
LU} =1(5) = | exp(=snr(0 as (157)

where s is a complex variable. f{s) or L{f(¢)} denotes the Laplace transform of f{¢). Note that f(s)
is a function of s because it is the integral of exp(— s7)f () from ¢ = 0 to ¢ = e, which means that
the variable 7 disappears.

The inverse Laplace transform restores the original function f{f) from the Laplace transform

of f(¢):

L™ '{f(s)} =£(0) (1.58)

Mathematical Representations of Linear Processes 17

The following examples demonstrate how to obtain the Laplace transforms for several
functions. Also, several important properties of the Laplace transform are shown.

Example 1.23
=1

! (1.59)

Example 1.24

fly=e™:
* > exp[— (s—a)]|” 1
LUF(O)} =f(s) = J exp(— st)exp(at) di = J exp[— (s—a)] dt = — _
0 0 S—a 0 S—a
(1.60)
Example 1.25
The Laplace transform satisfies the following linearity:
L{ag(t) +bh(t)} = J exp(—st)(ag(t) + bh(r)) dt
0
= aJ exp(—st)g(¢)dt+b J exp(— st)h(z) dt
0 0
=al{g(t)} +bL{h(t)} = ag(s) + bh(s) (1.61)
The linearity of the Laplace transform is used in Examples 1.27-1.29.
Example 1.26
f(t) = cosh(at) = exp(ar) +2exp(— a) :
1 1 1 1 1 N
) = gLem@} + sLlep-a) =3 (1, + 11y) m e (62
Example 1.27
(1) = sinh(ar) = exp(at) —Zexp(— at) :
1 1 1 1 1 a
) = gLewa} - srten-an) =3 (2, - 10) — e 06)

18 Process Identification and PID Control

Example 1.28

exp(iw?) +exp(—iwt)
3 :

(1) = cos(wt) =

s—iw S+iw

{ . .
:_<s+1w+s 1w) S (1.64)

2\824+0? £24+0?) 24+

16) = Jlexstion) + 3Llesw(o} = 5 (o + 1)

Example 1.29

exp(iw?) —exp(—iwt)

f(t) = sin(wt) =

2i
1 , 1 R A I
f(s) = g Lexplion} — s L{exp(—iwn)} = (s "o S+iw>
1 [s+iw s —iw)
S — = 1.65
2i (52 +w? 2+ w2> §? + w? (1.65)

Example 1.30
Relationship between L{exp(at) (1)} and L{f(?)}:

oo

Liexp(anf (1)} = j exp(— st)exp(ar)f (1) dt = j expl — (s — a)Jf (1) dt = f(s —)

0
(1.66)
The property of the Laplace transform of Example 1.30 is used in Example 1.31.
Example 1.31
f(t) = exp(at)cos(wt) and f(t) = exp(at)sin(w?):
(s—a) . 1)
L{exp(at)cos(wt)} = —————, L{exp(at)sin(wt)} = ——5—— 1.67
{exp(ar)cos(wi) } Pt a? {exp(ar)sin(wr) } a1 e (1.67)
Example 1.32
Relationship between L{#"} and L{{"'}:
=5 _ t oo =5
L{{"} = J f"exp(—st)dt = — I”M EJ " lexp(—st)dt = EL{t”"}
0 N 0 S Jo N
(1.68)
It is straightforward to obtain (1.69) from (1.68):
" nl .
L{r"} = —— ifnis an integer (1.69)

sl’l

Mathematical Representations of Linear Processes 19

Example 1.33
Numerical estimation of G(s) = y(s)/u(s) at s = 3i for the given u(f) and y(?).
From the definition of the Laplace transform, we have (1.70) and (1.71):

u(s =3i) = J: exp(— 3it)u(r) dt (1.70)

y(s=3i) = J: exp(— 3iz)y(¢) dt (1.71)

Equations (1.70) and (1.71) can be numerically calculated by a numerical integration
method if u(¢) and y(#) converge to zero as ¢ increases. Then, it is straightforward to calculate
G(31) = y(31)/u(3i). This example shows how to estimate the frequency responses of the process
from the measured process input u(f) and the process output y(#). Detailed descriptions on
numerical integration methods and frequency response estimation methods will be given later
in this book.

1.3.2 Laplace Transforms for Derivatives and Integrals

The Laplace transform of the derivatives of a function can be expressed by the Laplace
transform of the function and the initial conditions, as shown below.

L{%(t[)} = J: exp(— st) %(lt) dr = exp(—st)f(1)|y + SJ: exp(— st)f (¢) dt
— SL{f (1)} —£(0) (1.72)
{2} = sttry -r0) (173

2

L{d c{t (2’)} - sL{d];(tt)} _%’) =L@} -0 _d{T(lt) 3 (1.74)

O\ _ L[S O] 4 df () &r (1)

L{ dr } a SL{ dr? } d? |y SUIO} =570 = de |,y d? |
(1.75)
n n—1

R R R R B A I LED

20 Process Identification and PID Control

The Laplace transform of the integrals of a function can be expressed by the Laplace
transform of the function, as shown in (1.77):

L{J;f(r) dT} = J: exp(— st) J;f(T) drdt

=)

1] ew-sra =2 am)
o SJo

t

= — éexp(—st)J f(r)dr

0

The following examples show how (1.76) is used to convert the differential equation in the
time domain to the algebraic equation in the s domain.

Example 1.34
Consider the following differential equation:

Ey(r) | () | ,dy(0) Pu(t) |, du(?)
t) = t 1.7
T +3 P +3 ” +y(2) a2 +3 " +u(t) (1.78)
where the initial conditions are
d*y(1) dy(7) du(t)
az |, " ar |, ¥0)=0, — » u(0)

If the Laplace transform is applied to (1.78), then (1.79) is obtained by (1.76):

$39(8) + 352y (s) + 3sy(s) +y(s) = s2u(s) + 3su(s) + u(s) (1.79)
ys) S35+ (1.80)
u(s) s34+3s2+3s+1 '
Example 1.35
Consider the differential equation:
Fy(r) () L dy(D) du(r) |, du(r)
3 3 t) = 3 t 1.81
aw T Tae T () aw T) (1.81)
where the initial conditions are
d*y(7) dy(7) du(1)
= =0.1 0)=0 =1 0)=0
i |, =% Tarl, , ¥(0)=0, — s u(0)

If the Laplace transform is applied to (1.81), then (1.82) is obtained by (1.76):

$y(s) = 0.15 4+ 35%y(s) — 0.3 + 3sy(s) +y(s) = s2u(s) — 1+ 3su(s) +u(s) (1.82)

Example 1.36
Consider the following integro-differential equation:
&Ey() | dy(o)

az T a W= -0l

t

Fu(r)+ J u(7) dr (1.83)
0

du(t)
dr

Mathematical Representations of Linear Processes 21

where the initial conditions are

dy(?)

2 =30 =0.u(0)=0

=0
If the Laplace transform is applied to (1.83), then (1.84) is obtained by (1.76) and (1.77):

$3(8) +8y(5) +3(s) = — 0.Lsu(s) + u(s) + @

(1.84)
Example 1.37
The differential equation corresponding to the algebraic equation (1.85) is (1.86):
2 u(s)
s7y(8) + 2sy(s) +y(s) = — su(s) +u(s) +0.5 g (1.85)
dy(r) |, dy(r) du(1)
22 ==
i + i +y(1) ” +u(t)
! dy(¢
+o.sj urydr, YOI)20, o) =0 (1.86)
0 dr |
1.3.3 Laplace Transform for Unit Step Function, Time Delay and
Impulse Function
The definition of the unit step (Figure 1.7) function is
o0 ifr<o
S(t—0) = { L ies (1.87)

The Laplace transform of the unit step function S(z — 0) is

oo

L{S(t—0)} = J

0

=

exp(—st)S(t—0)dt = J exp(—st)dt = — exp(= 1) °°: exp(= 05)

0 s 0 s

(1.88)

s 1

S(t-6)
]

>
»

t 6 t

\4

Figure 1.7 Unit step function.

22 Process Identification and PID Control

f.,(t-6) 1/m
P Area=1

v

6 6+m

Figure 1.8 Impulse function.

The time-delayed function f(z — 0)S(¢ — 6) has the following Laplace transform:

oo =00

exp(—st)f (t—60)S(t—0)dt = J exp(—st)f(t—6)dr (1.89)
t=0

Lif(t-0)s(t-6)} = |

0

Substituting x = ¢ — 6, the following Laplace transform is obtained:

X=00 — 0

L{F(t—0)S(t —0)} = J el s) () d
= exp(— 0s) Jx_: exp(— sx)f(x) dx = exp(— 0s)L{f(¢)} = exp(— 0s)f (s) (1.90)

The unit impulse function (Figure 1.8) is defined as

8(t—0) = limofm(t—a) (1.91)
_J1/m 0<t<0+m
Jnlt=8) = { 0 otherwise (1.92)
The impulse function has the following Laplace transform:
« 0 +m
— vt
L{5(1-0)} = J exp(— s1)8(t — 0) di = lim J exp(—st) ..
0 m—0 Jg m
_ 0+m B _ B
= lim [_ exp(—s7)] _ lim [_ exp(— Os)exp(— sm) . expl(0S):| 193)
m—0 sm 0 M0 o =

1 —exp(— sm)

L{6(t—0)} = exp(—0s) n111Ln0 () = exp(— 0s) (1.94)

sm

L{s(n)} =1 (1.95)

Example 1.38
The algebraic equation (1.96) in the Laplace domain is equivalent to the differential equation
(1.97) in the time domain:

s7y(s) + 3sy(s) + y(s) = 2su(s)exp(— 2s) + u(s)exp(— 2s) (1.96)

Mathematical Representations of Linear Processes 23

d?y(t dy(z
d;(z) +3¥”(Z) =2

dy(7)

dt

du(t—2)
dt

S(t—2)+u(t—2)S(t—2)
(1.97)

=y(0)=0
=0

Also, note that 2[du(z —2)/d#]S(t — 2) + u(t — 2)S(¢ — 2) is equivalent to 2[du(z — 2) /dt] +
u(t —2) with u(£)=0 for £ <0. So, (1.97) can be rewritten:

t ! ! (1.98)
SOl)20, w)=0 fort<0
L P

Example 1.39
The algebraic equation (1.99) in the Laplace domain is equivalent to the differential equation
(1.100) in the time domain:

$2y(s) + 3sy(s) + y(s) = 2exp(— 3s) (1.99)
2
ddyfz’) +3d{d—(tl) F (1) = 28(1— 3) (1.100)

1.3.4 Differentiation and Integration of Laplace Transforms, Convolution

From L{f(#)} = f(s) = J: exp(— st)f (¢)dt, we obtain

df (s)
ds

= J: — texp(—s0)f (1) dt = — J: exp(— st)1f (1) dt = — L{tf (1)}

So, the Laplace transform of #f{(¢) is obtained by differentiating the Laplace transform of f(¢)
as follows:

Ly = - L (1.101)

Meanwhile, the Laplace transform of f{#)/¢t can be obtained by integrating the Laplace
transform of f{(7):

r o {r exp(— $)f(¢) dt} d = J: {r exp(— §0)f(2) div} dr

s 0
}dz

- mf(t){r exp(— 1) dS}dt - J:f(z){ _ w

0 K

24 Process Identification and PID Control

Then:

L{@} = r £(3) ds (1.102)

t s

Consider the following equation to derive the convolution theorem:

&mmwszmﬂwvmwm:fﬂmmenmwm

= Jmf(r)exp(— ST) Jm exp(—sx)g(x) dxdr (1.103)
0 0

Equation (1.103) can be rewritten by using t=Xx + 7 and changing the order of the
integration as follows:

70 |

T

o oo oo

exp(—st)g(t—7)dedr = J: J exp(—st)f (1)g(t—7) dedr

T

7(5)ets) = |

0

= J: exp(— st){J:)f(T)g(t —7) d’T} dt

(1.104)
So, the following convolution theorem is derived:

L O}ele(0} =0t = [e |

0

t

f(r)g(t— T)dT}dt = L{Jff(f)g(t - T)d,r}

0
(1.105)

Example 1.40
The Laplace transform of fexp(— 3¢) is

d(1)_ 1
ds\s+3/) (s+3)?

by (1.101).

Example 1.41
The Laplace transform of exp(—37) is

°° 1 1
J 5 ds =
s (S+3) s+3
by (1.102).

Example 1.42
The convolution theorem means that L{fé f(n)g(t—7)dr} =f(s)g(s). For example, the
inverse Laplace transform of 1/[(s+3)(s+1)] is

! _exp(—31) N exp(—1)

J; exp(—37)exp(—t+7)dr = exp(—1) Jo exp(—27)dr = 5 >

Mathematical Representations of Linear Processes 25

1.3.5 Laplace Transform of Periodic Functions
Assume that f{(?) is a periodic function of which the period is p. Then, the followings are valid:
2p

exp(—st)f (¢) dt+ J exp(— st)f (¢) dt

p

e P
76) = | exn(—snr(yar = |
exp(—sO)f(1)dt+ --- = JP exp(—st)f (¢) dt

0

4p

+ J3p exp(—so)f (¢) dt + J

2p

+ sz exp(—st)f (t—p)dt+ J

P

3p
4p

exp(—st)f(t—2p)dt+ L exp(—st)f(t—3p)dt+ ---

3p

2p
(1.106)

Substituting 7 =1 — p, we find

2p P
J exp(—st)f (t — p) dt = exp(— sp) J exp(—s7)f (1) dr

P 0

Similarly, we obtain
P

3p
J exp(— st)f (t —2p) dt = exp(—2sp) J exp(— s7)f (1) dr
2p 0

Then:

P P
fls) = L exp(—st)f (¢) dt +exp(— sp) Jo exp(—s7)f (1) dT +exp(—2sp) x

JZ exp(—s7)f () dr +exp(—3sp) E exp(—s7)f(7)dr+ -+ = (1 +exp(—sp) +exp(—2sp)

P 1 P
+exp(—3sp)+) Jo exp(—st)f (¢)dt = l—exp(—sp)Jo exp(—st)f(1)dt fors>0
(1.107)

So, the Laplace transform of a periodic function can be calculated if the function values of
only one period are given.

1.3.6 Taylor Series and Padé Approximation of Time Delay
The Laplace transform of the time delay term S(¢ — 0) is exp(—6s). The Taylor series is

:1+§:(_

dl
f(s) = exp(— 6s) —l—i—Z; gs’

s=0

Then:

u(s)exp(— Z

26 Process Identification and PID Control

is obtained and

u(t—0)8(t—0) = u(i l. dﬂ)

equivalently. Now, we realize that the delayed signal can be represented by a linear
combination of the derivatives of the original signal.
The approximation of

Nl—Gs

f(s) = exp(—6s) _1+Z

is called the Taylor series approximation and

exp(—0.56s) 1—6s/2

f(s) = exp(—0s) = exp(0.56s) T+ fs/2

is called the Padé approximation. This means that the delayed signal of g(¢) = u(¢ — 6)S(¢ — 0)
can be approximated like

2(t) = u(t—0)S(t—0) ~ u(r) 79db:1(tt)
. 0dg(1) 6 du(1)
g(t)+§ dt (1) 2 dr

1.3.7 Partial Fractions

Partial fractions are very useful to restore the original function in the time domain from the
Laplace transform in the Laplace domain. Consider the following examples.

Example 1.43
Obtain the inverse Laplace transform for the following Laplace transform:

s+2

¥s) = s(s+1)(s—2)

(1.108)

Solution y(s) can be rewritten in the following form if the roots of the denominator are not
repeated:

s+2 a b c
_ _4., b 1.1
¥s) s(s+1)(s—2) s+s+1 +s—2 (1.109)

a=—1 is obtained by putting s =0 in (1.110) after multiplying by s on both sides of (1.109):

s+2 sb SC
e R 1.110
Gr6-2) “Ts¥1 502 (1.110)

Mathematical Representations of Linear Processes 27

Similarly, b = 1/3 by putting s = —1 in (1.111) after multiplying by s + 1 on both sides of
(1.109):

s+2 (s+1a by (s+1)c

s(s—2) s s+3

(1.111)

Similarly, ¢ =2/3 by putting s =2 in (1.112) after multiplying by s — 2 on both sides of
(1.109):

(s+2) (s—=2)a (s—2)b

= 1.112
s(s+1) s + s+1 te ()
Then:
s+2 -1 1/3 2/3 1 2
¥s) s(s+1)(s—2) s +s+1 +s—2’) —|—3exp()—|—3exp()
(1.113)
Example 1.44
Obtain the inverse Laplace transform for the following Laplace transform:
3_ 4 2 4
oA (1.114)

ys) = s2(s—2)(s—1)

Solution y(s) can be rewritten in the following form if some of the roots of the denominator
are repeated:
3 2
" —4ds"+4 a a b c

S e Ty § R

(1.115)

b= —1 is obtained by putting s =2 after multiplying by s — 2 on both sides of (1.115). In a
similar way, ¢c=—1 and a, =2 can also be obtained.

To obtain a;, multiply by s> on both sides and differentiate both sides with respect to s.
Finally, put s=0.

S — 45244 s*b s*e

- - = K — 1.116

(s=2)(s—1) a2+ml+s—2+s—l ()
d[s—4s®+4 d [s*b d [s’c
= - = — = — | — 1.117
ds |:(S_2)(S_1):|s_0 al+ds (S_2>s—0+ds <S_1>s—0 ()

where it is noted that

d [s*b _d s2c —0
ds\s—2 X:O_ds s—1 s:()_

28 Process Identification and PID Control

because they include s°. So, the following simple equation is obtained:

d[s*—4s>+4
—_— :3:a1
ds [(s=2)(s—1)],0

Finally, the following inverse Laplace transform is obtained:

(1.118)

§°— 45> +4 2 3 1 1
= =4 t)=2t+3— 2t) — t
)= G e T s e M0 =23 e — ey
(1.119)
Example 1.45
Obtain the inverse Laplace transform for the following Laplace transform:
2
y(s) = (1.120)

(2+1)(s+1)°

Solution y(s) can be rewritten in the following form if the complex roots of the denominator
are not repeated:

2 _aista b3 by by

P+ D1 2HL 0 (s+1) + G IP + D) (1.121)

y(s) =

As discussed in the Example 1.43, multiply (s + 1)* on both sides as shown in (1.122) and
put s = —1 to obtain b3 = 1. As discussed in Example 1.44, multiply by (s + 1)? on both sides
and differentiate both sides with respect to s, as shown in (1.123), and put s = —1 to obtain
b2 =1.

2 (s+1)*(ars +ay)

= 2
211 241 +bs+bo(s+1)+bi(s+1) (1.122)

d 2 d (S+1)3(a1s+a2) d
Wl =T by — 1
ds<s2+1> o ds 241 1+ st(s+ Mo=—1
=
d 2
b (1) = b (1.123)

To obtain by, multiply (s + 1)* on both sides and differentiate both sides twice with respect
to s, as shown in (1.124). Finally, put s = —1 and obtain b, = 1/2.

&/ 2 & d

ds2 \s2+1/|_ | ds?

G+ (@s+a) &
ds?

2
2+1 (s+1)°|__, =2b (1.124)

‘ + b
s=—1

Mathematical Representations of Linear Processes 29

Then, we obtain

2 _ais+a 1 1 1/2

Y T R R N NS ICILY Py

Equivalently:

(2 +1)(s+ 1)

2= (a5 +a)(s+ 1)+ (P + 1)+ +D(s+1) + 5

(1.125)

The following equations are obtained by comparing the two terms corresponding to the
fourth and third order.

ste0=1/2+a (1.126)
£ 0=14+143a1+a (1.127)
Therefore:
2 —1/25—1/2 1 1 1/2
¥(s) =— = a7t -+ Tt (1.128)
(S+1D)(s+1) s=+ (s+1) (s+1)° s+
t in(z —t —t
W) = - CO;() sz()1 o e"p(z p—— —eXp(z) (1.129)

1.3.8 Solving Differential Equations

The following examples demonstrate how the Laplace transform can be applied to solve
differential equations. Note that the Laplace transform is used to convert differential equations
in the time domain to algebraic equations in the Laplace domain. It is relatively easy to obtain
solutions in the form of the Laplace transform by solving the algebraic equations. Finally, the
solution in the time domain can be obtained with the inverse Laplace transform of the solution
obtained in the form of the Laplace transform.

Example 1.46
Let us solve the following differential equations using the Laplace transform:

DW= ()1, ¥(0)=05 (1.130)

sy(s) —0.5= —y(s)+ = (1.131)

30 Process Identification and PID Control

Equation (1.131) is rewritten as

0.5 1 0.5 1
= = — - 1.132
¥s) s+1+s(s+1) s+1+s ()

Then, the ultimate solution in the time domain is obtained by applying the inverse Laplace
transform to (1.132):

y(t) = 1—0.5exp(—1) (1.133)

Example 1.47
Let us solve the following differential equations using the Laplace transform:

&y() | dy() dy(¢)
22— t)=38(t—0.5 —— =y(0)=0 1.134
gz Trg P =st=03) =57 =30 (1.134)
The Laplace transform of (1.134) is
exp(—0.5s
52y(s) +2sy(s) + y(s) = y (1.135)
Equation (1.135) is rewritten as
-0.5 1 1
y(s) = M —f - exp(— 0.55) (1.136)
s(s+1) s (s+1)7 s+l

Then, the inverse Laplace transform of (1.136) results in the following solution:
y() = {1 —exp[— (£—0.5)] — (1 —0.5)exp[— (= 0.5)]}S(t — 0.5) (1.137)
Equation (1.137) is equivalent to the following representation:

W(1) = { (1; exp[— (t—0.5)] — (t—0.5)exp[— (1 — 0.5)] ;2065.5 (1138)

Example 1.48
Let us solve the following differential equations using the Laplace transform:

dycllt(l) = —yi () +2(0) + 1 (1.139)
D20 20+ 200 (1.140)

y1(0) =0, »(0)=05 (1.141)

Mathematical Representations of Linear Processes 31

The following algebraic equations (1.142)—(1.145) in the Laplace domain are obtained by
applying the Laplace transform to the differential equations. Equations (1.146) and (1.147) are
the solutions obtained by solving the algebraic equations (1.144) and (1.145). Equations
(1.148) and (1.149) are the ultimate solutions in the time domain, found by the inverse Laplace
transform of the algebraic equations (1.146) and (1.147).

21(5)=1(0) = ~31(s) + 202(5) + (1142

22(5) = 12(0) = 21 (5) + 22:(5) (1.143)

(54 1a(s) ~ 20a(s) = (1144)

—2y1(s) + (s — 2)y2(5) = 0.5 (1.145)

ne) =35 —S3;(i+z) * (s—3)1(s+2) :1,/73 j/—lg - ST/Sz (1.146)
yols) = 2 L 12+ —1/3 8/15 3/10 (1147

s(s=3)(s+2) (s—3)(s+2) s s—3 s+2

1 dexp(3t) 3exp(—2i)

=3+ 5

(1.148)

1 8exp(3f) = 3exp(—2f)

wi)=-3+—5 "+ "1 (1.149)

1.3.9 Relationship between Laplace Domain and Time Domain

A lot of the literature on process dynamics and control uses the Laplace transform to explain
the core algorithms and signal flows. On the other hand, there is a need to understand the
algorithms and signal flows in the form of differential equations to simulate or implement
them. Thus, it is important to understand exactly the relationship between the Laplace
domain and the time domain. If the formula derived in this chapter is used, then the algebraic
equations in the Laplace domain can be obtained from the differential equations in the time
domain, and vice versa. Refer to the following examples.

Example 1.49
The equation

u(s) = 1.5e(s) (1.150)

32 Process Identification and PID Control

is equivalent to

u(t) = 1.5¢(1)

Example 1.50
The equation

(5s+4)exp(—0.1s)
352 + 25+ 1

y(s) = u(s)

is equivalent to the following differential equations:

d?y(t dy(¢
dyt(2)+2—{1(l)+y(r):5

du(t—0.1)
dr

3 +4u(r—0.1)

dy(z)

dt =y(0)=0, u(t)=0 fort<0

t=0

Example 1.51
The equation

=121+ s +200)es

is equivalent to the following differential equation:

1.2 (! de(t)
=1.2 — 1.2 x 2.
u(t) e(t) + 1O.OJ()€(T) dr+1.2x2.0 ”

, e0)=0

Example 1.52
The multivariable equation

u(s) =1.2 (1 + 101.Os> ei(s)+0.2 (1 + 301.0S> e (s)

is equivalent to the following differential equation:

t t

1.2 0.2
u(t) = 1.2e (1) + m[e (1) dr+0.2¢5(1) + mjo ey (1) dr

0

1.4 Transfer Function and State-Space Systems

(1.151)

(1.152)

(1.153)

(1.154)

(1.155)

(1.156)

(1.157)

(1.158)

The transfer function is a simple and useful tool to represent the relationship between the
process input and the process output. The state-space representation is required to simulate the

dynamics of the given transfer function.

Mathematical Representations of Linear Processes 33

1.4.1 Transfer Function

The transfer function from u(¢) to y(#) is defined as the Laplace transform of y(¢) over the
Laplace transform of u(#) assuming that the initial values are zero and steady state (denoted by
the term initial zero-steady-state).

G(s) =) (1.159)

If u(7) and the other variables simultaneously affect y(¢), then the other variables should be
assumed zeroes to obtain the transfer function from u(z) to y(¢). Refer to the following
examples.

Example 1.53
Obtain the transfer function from u(#) to y(z) for the process

dy(t dy(t
dyt(z)+2—il(t)+y(z)=3

du(t)
dr

+u(r) (1.160)

Solution Assuming the initial zero-steady-state (that is, dy(#)/d#l,—o = y(0) = 0, u(0) = 0), the
Laplace transform (1.161) and the transfer function (1.162) are obtained:

s2y(s) + 2sy(s) + y(s) = 3su(s) + u(s) (1.161)

y(s) 3s+1
= 1.162
u(s) s24+2s+1 ()

Example 1.54
Obtain the transfer function from u(#) to y(7) for the process

dy(t dy(t
dtg) +2% () =3

du(t—-2)
dr

+u(t—2) (1.163)

Solution Assuming the initial zero-steady-state (that is, dy(¢)/dtl,_o = y(0) =0, u(t) = 0 for
t<0), the following Laplace transform (1.164) and transfer function (1.165) are obtained:

52y(s) + 2sy(s) + y(s) = 3su(s)exp(— 2s) + u(s)exp(— 2s) (1.164)

%: (3s;1+)62>;pg 2s) (1.165)

Example 1.55
Obtain the transfer function from u(7) to y(¢) and the transfer function from v(z) to y(z) for the
following process, noting that u(#) and v(#) simultaneously affect y(¢):

dy(t dy(?

du(t—2)

o Tur=2) 421 (1.166)

34 Process Identification and PID Control

Solution To obtain the transfer function from u(¢) to y(¢), assume the initial zero-steady-state
(that is, dy(¢)/dt|,_, = y(0) =0, u(¢) =0 for 1<0) and the variable v(f)=0. Then, the
Laplace transform (1.167) and the transfer function from u(?) to y(#) (1.168) are obtained:

$2y(s) + 2sy(s) + y(s) = 3su(s)exp(— 2s) + u(s)exp(— 2s) (1.167)

§%§§(Ssjafﬁi§5§12s) (1.168)

To obtain the transfer function from v(#) to y(¢), assume the initial zero-steady-state (that is,
dy(8)/dtl,—o = y(0) =0, v(f) = O for < 0) and the variable u(#) = 0. Then, the Laplace transform
(1.169) and the transfer function from v(¢) to y(¢) (1.170) are obtained:

s?y(s) + 2sy(s) + y(s) = 2v(s)exp(—) (1.169)

y(s) _ 2exp(—s)
o= Ernt (1.170)

Remark Equation (1.166) can be rewritten as follows using the superposition rule:

2 ult —
d dy;z(t) +2dy(;§l) +y(t) =2v(t—1) (1.172)
y(1) = yu(t) + (1) (1.173)

The transfer function from u(?) to y(#) corresponds to the transfer function from u(¢) to y,(t)
and the transfer function from v(¢) to y(¢) corresponds to the transfer function from v(7) to
y,(?). Now, it is clear from (1.173) that the relationship between the process output y(s) and
the process inputs u(s) and v(s) can be obtained by adding the two transfer functions as
follows:

(3s+ 1)exp(—2s)
2425 +1

2exp(—s)
2 +2s+1

y(s) = u(s)+ v(s) (1.174)

1.4.2 State-Space Systems

The transfer function

b n—1 b n—2 b _ b
G(S):@: 1" b by TR by s+ " exp(— B5)
u(s) s'taps" V- a1 s+a,

Mathematical Representations of Linear Processes 35

is known to be equivalent to the following differential equations with the following initial
conditions:

d"y(7) d"~'y(n) dy(7) d"~lu(r—6)
_ N=bhb ——— 7~
T g T ey banll) = b
du(t—6
+bn,1”(T)+bnu(t—0) (1.175)
du(t
u(t) =0 and ;‘Z(I.):o, i=1,2,--,n—2 fort<0 (1.176)
diy(t
y(t) =0 and c)l)z(f):()’ i=1,2---,n—1 fort<0 (1.177)

It is proven that the differential equation system (1.175)—(1.177) is equivalent to the
following state-space system, which is called the state-space representation (realization):

d’;([l) = Ax(¢) + Bu(t — 0) (1.178)
y(t) = Cx(1) (1.179)
x(0) =0 (1.180)

where u(t —6) and y(¢) denote the delayed process input and the scalar process output
respectively. x(¢) is the n-dimensional state. Here, the system matrices are as follows:

0 0 0 --- 0 —a, |
10 0 -+ 0 —a,_
010 -+ 0 —a,,
A=|. (1.181)
0 0 0 0 —aw
0 0 0 1 —a
B=|b, by by o - by b]" (1.182)
cC=[0 00 --- 0 1] (1.183)

Note that differential equation (1.175) cannot be solved directly by the usual ordinary
differential equation solvers because the high-order differentials are included. This problem
can be solved simply by the state-space representation. That is, the solutions y(#) of the
differential equations (1.175)—(1.177) are easily obtained by solving the state-space model
(1.181)—(1.183) with the usual ordinary differential equation solvers.

36 Process Identification and PID Control

Equation (1.180) is valid for the case that all the initial values of the process input and the
process output are zeroes, as shown in (1.176) and (1.177). If the initial values of u(z —) and
y(?) are not zeroes, then (1.175) is equivalent to (1.178), (1.179) and (1.181)—(1.183) with the

initial values x(0) of (1.184).

x(0) =x""y
[¥(0)
d
N CBu(—0)
dr
d?y du
|22 —caBu(—0) - cBY:
v A def,_
a! d
N carcy(—0)—canBY| . _cBS Y
Ldem= g def,_ drm=2_ 4]
o -
cA
v= | A
CAnil

Example 1.56

Obtain the state-space process corresponding to the following process:

d?y(1) dy(?) du(t—2)
TR araR iU g Tut-2)
dy(z
L) =y(0)=0, u(t)=0 fort<0
dr |

Solution From (1.178)—(1.183), the state-space process is

d%g”: h’ _ﬂx(r)+ Mu(z_z)

d"2u

(1.184)

(1.185)

(1.186)

(1.187)

(1.188)

(1.189)

(1.190)

(1.191)

Mathematical Representations of Linear Processes 37

Example 1.57
Obtain the state-space process corresponding to the process

2
deyt(zt) ded(zt) 4 6y(1) = 2u(t —2) (1.192)
SO o) =0, w =0 forr<0 (1.193)
de |

Solution Note that (1.192) should be converted to the standard form (1.175) by dividing
(1.192) by 2.0. Then, from (1.178)—(1.183), the state-space process is

dx(r) [0 —6/2 2/2

P L Py x(t)+ 0 u(t—2) (1.194)
y(©) =10 1]x() (1.195)
x(0)=[0 0]" (1.196)

Example 1.58
Obtain the state-space process corresponding to the process

dy(7) d*y(7) dy(2) du(t—0.5)
2
: y(z[) =2 ¥(0)=0, u(r)=0 fort<0 (1.198)
dez |, dr |

Solution From (1.178)—(1.183), the state-space process is

00 —1.0 1
d’;_(lt): 1 0 —32|x()+ | —2|u(t—0.5) (1.199)

01 =35 0
y@©)=[0 0 1]x(2) (1.200)

x(0)=[0 0 o] (1.201)

38 Process Identification and PID Control

Example 1.59
Obtain the state-space process corresponding to the process

d*y(7) d*y(1) dy(?) du(t—0.5)

S H3S I 432 () = — 2 +u(1—0.5) (1.202)
dy(t dy(t

—o1, YU L 03 30) =05 w(—05)=1 (1.203)
a |, |,

Solution From (1.178), (1.179), (1.181)—(1.183) and (1.184)—(1.186), the state-space
process is

o [0 0 —10 1
= |10 =320x(0+ | =2 fu(t-05) (1.204)
! 01 -35 0
y@&)=[0 0 1]x(z) (1.205)
x(0) = x 'y (1.206)
0.5
f=1]-03 (1.207)
2.1
0 0 1
=10 1 —-35 (1.208)
1 =35 905

Problems

1.1 Figure P1.1 shows an aeration tank for wastewater treatment. Microorganisms in the tank
remove the pollutants in wastewater. The dissolved oxygen (DO) in the wastewater
should be controlled to a desired level to maximize the treatment performance of the
microorganisms. The blower is to adjust the air flow-rate, which is proportional to the
voltage v(¢). DO is measured by the DO sensor. Determine the manipulating variable and
the controlled variable for the DO control system.

1.2 Figure P1.2 shows a schematic diagram for a level control. The valve is to adjust the flow
rate and the DP cell measures the liquid level in the tank. Determine the manipulating
variable and the controlled variable.

1.3 The process output y(#) =0.5 — 0.5(1 + t/2) exp(—1/2) is obtained for the process input
u(t) = 1.0. Estimate the parameters of the following process:

Mathematical Representations of Linear Processes 39

influent
DO
>
o
(@] effluent
© o © ~ DO sensor
o o © o
o % o o
[]
A
air
power | blower v(t)
Figure P1.1
influent
. LN N Y
liquid level
<«— DP — - -
- _ — @ effluent
Figure P1.2

1_2 dd);(zt) +2,Td):j_(tl) +y([) = ku(t)

1.4 The process output y(¢) = (1/+/2)sin(2¢ — 37r/4) is obtained for the process input u
() =sin(2¢). Estimate the parameters of the following process:

dy(1 d?y(t dy(z
7 —cyé) 4372 dylg) +37% +y(1) = ku(1)

1.5 Obtain y(?) at steady state for the following system:

2 u
ddy,(zt) + dﬁ—(tt)(z.ojto.lu(t)) +y(1) = O.Idd—(tt) +Vu(r)

u(t) = 0.5(1 = y(1))

40

Process Identification and PID Control

1.6 Obtain y(¢) at steady state for the process

1.7

1.8

1.9

2d}é—(tl) +y(1) = (14 0.1y(1))u(z)
u(t) = 0.5(1 —y(1)) +O.25w

Rewrite the following processes using deviation variables of which the reference value is
Vrer = 0.0:

&y() |, dy(0) du(1)

(a) dl‘z + 27 +y(l) +3=0.5 ar — M(l)
dy(1) dy(1) . odu(r—0.2)
(b) a2 +27 +y(t)—0.1y(t—0.1)—O.ST—u(Z—O.Z)—i-S
Choose linear processes and determine if they are time invariant or time variant.
&y(1) | dy(r) _ o5 du()
(a) a2 + “ar +y(6)(140.5u(t)) = 0.5 i +2u(t)
® (1 +0.1z)d{d—(;) +y(¢) = (3.0+ t)u(z)
() (1+0.17) dz—(tﬁ +y(t) = 3.0+ 1)u(t—0.5)
@ 220 =20, u() =050 -3(0)
(e) 2d)é—(tt) +y(t) =2u(t—0.1), u(t) =0.5(1—-y(1))
dy(2) ’
) 2? +y(f) =2u(t—0.1), u(t) =0.5(1—y(2)) +0.2J (1—y(r))dr
0
@ 22y 132210, u) =0501-3(0)
dy(1) _
(h) “dar +y(1)=1.0

Obtain the process outputs ¥(0.0), y(0.1), y(0.2), ¥(0.3), ¥(0.4) of the linear processes for
the following respective process inputs. The available information is that the responses of
the process to the process input u;(¢) =1 for t > 0, u;(¢#) =0 for <0 are y,(z) = 0.0 for
t<0.0, y1(0.1)=0.01, y1(0.2) =0.02, y;(0.3) =0.04, and y;(0.4) =0.07.

(@ u(t)=30 fort>0, u(t)=0 fort<0

(b) u(t)=—-2.0 fort>0, u(t)=0 forr<0

© u(®)=10 fort>02, u(t)=3.0 for0<r<0.2, u(t)=0 forz<0

d u(®)=-1.0 fort>0.2, u(t)=0 forr<0.2

(e u(t)=—-10 fort>02, u(t)=0 for0.1<t<0.2, u(t)=20
for0 < r<0.1, u(t)=0 fort<0

Mathematical Representations of Linear Processes 41

1.10 Obtain the process outputs y(¢) of the linear process for each of the following process
inputs. The available information is that the responses of the process to the process input
uy () =sin(¢) + sin(2¢) + 1 are y,(¢) =0.7 sin(¢ — 0.1) + 0.5sin(27 —0.2) 4+ 1.2

(@)
(b)
(©)
(d)
(e)
®
(8

1.11 Obtain the linearized process around u = 1.0 for the following nonlinear processes and
express it with the deviation variables:

(a)

(b)

(©)

(d)

©)]

dy_(t) +y()(1+0.12(2)) = /u(t)

dt
2
ddyt(zl‘) +y3(l)+0.05d2—(tt)”(t) = u(t)

DU 4 (1) = u(t

dr
2 2
“o 220 o0s(U0) 20w 450 =)

dyd—(tt) +Y () +5=u(t) +2

1.12 Find y(¢) for the following Laplace transforms:

(a)

(b)

()

(d)

(e)
®

(@

y(s) =

(25+1)s
O
y(s) = (S—l—ll)2s
ww:@+;%
-t
o) = (s —|—11)2s B ex(i(; 1??
y(s) = :

$(s=2)(s+2)

42 Process Identification and PID Control

1.13 Find y(?) for the following differential equations using the Laplace transform:

Py() | L dy(0) dy(2)
(a) d12 +3 d[+2y(t)_0a y(o)_la dl 1:0_0
dy(1) | L dy() dy(7)
b)) —a T3 (O =1 y(0)=—r » 0
2
© ddytgt)—f-3dz—(tl)+2y(t):u(t), u(f) = 1.0 for
d
(>05, u(t)=00 fort<0.5andy(0) =20
dz |
2
@ ddyl(zt) +3d)jd—(tt)+2y(t):u(t), u(t)=1.0 for0.5<¢<1.0, u(t)=0.0 for
t<0.50rt > 1.0, and y(0) :dy_(t) =0
dr |

1.14 Find y(?), y»(¢) and y5(7) for the following differential equations using the Laplace

transform:
dy: (2)
= —y3(t)+1.0
T y3(6) +
dy, (¢
y(zi() y1(1) =3.0y3(1) = 0.5
t
dy3(l)

1.15 Rewrite the following differential equations into the algebraic equations in the Laplace

domain:
@ 22450 =300 -5, H0) =0
& 22y =300 - y(0) + mjt(l —y(r)dr, ¥(0)=0
0
© 2%’) +y(t)3.0(1y(l))Jrl.OJ;(ly(T))dTJrO.Sd(lzity(t)), 3(0) = 0
&y(r) |, dy(1) dy()

(d)

i 27 +y(t) =3.0(1 —y(z)), —=

(e) ZdyT(lt)er(t) =3.0(8(t—0.5)—y(t—0.5)S(¢—0.5)), y(t) =0 for t <0

dr |,

Mathematical Representations of Linear Processes 43

t

[S(t—0.5) —y(1—0.5)]

® 220 oo 1.0J IS(7—0.5) — y(r—0.5)] dr+0.5%

dr 0 dr ’
y(t)=0 fort <0
(2 Zd{T(;) +y(1) =u(1-0.5)$(t=0.5), u(r) = —y(1)+3.0(1-y(2)), y(0)=0

1.16 Rewrite the following algebraic equations into the differential equations in the time
domain:

@) s*y(s) +5%y(s) +sy(s) = su(s) + 10u(s)
() 5*y(s) +57y(s) +sy(s) = (su(s) + 10u(s))exp(— 0.1s)
(©) u(s) = —exp(—0.1s)y(s) + (1 — y(s))exp(—0.1s) + L (1 —y(s))exp(—0.1s)
+ (2 —y(s))exp(—0.1s)
(—0.15> +0.55+ 1)exp(— 0.1s)

@ y(s) = S 432 s+ 1 u(s)
—0.1 —-0.2
© ()= TR0) FPL02

() y(s) = Su(s) +7v(s)

1.17 Obtain the transfer function for the following process:

d>y(r) dy(r) du(t—0.5) dy(r)] _
(a) 2 d[2 + T— —OlT +3u(l—05), d_ll:o —y(O) —O,
u(t)=0 fort<0
dy(r) | dy(r) _ ' du(r) dy(1) _
u(t)=0 fort<0
Ey() | dy(r) ’ ()]
o 220 B 0 5u-05) 401 JO ur—05)dr %Y —y0) =0
u(t)=0 fort<0
d*y(r) dy(r) dy(@| g

u(t)=0 fort<0, v(t)=0 fort<0

1.18 Obtain the state-space process corresponding to the following processes:
@ 229 4 3y(1) =u(r—05), y0)=0, u(t)=0 forr<0

d*y(r) | dy(r) _ dy(2)
(b) d12 +37 +y(t) = 01 +H([— 05)7 E—

u(t)=0 fort<0

du(t—0.5)
dr

44 Process Identification and PID Control

dy() dy(r) _ dy()] o
(C) 3 d[2 + 6T + 3y(t) = 2M(Z— 05), ? o = y(O) = O,

u(t)=0 fort<0

dy(0) (@) Ey(n) | dy(r) d*u(2) du(t)
@ 2 12 4 = —-02 1.
drt +8 dr + ds2 +6 dr +ay(0) 0 dr? 0 dr
+4u(t),
&y (1) d’y(1) dy(7) du(t)
e |, dP |, dr |, =¥0)=0, dr |,_, =u(0)=0
dhy(r) Ey(0) &) | dy() d*u(1-0.3)
@ 2 8 12 6 4y(n)= —02=——2 2
a ST TP Tae OTar T (0 dr
11.03=03) - 03),
dt
dy(t dy(t dy(z
YOI _gs DO _ o, SO g y(0) = — 0.5,
dr ez dr i
du(t) —02, u(—03)= —04
dr t=—-03
Bibliography

Kreyszig, E. (2006) Advanced Engineering Mathematics, John Wiley & Sons, Inc.
Seborg, D.E., Edgar, T.F. and Mellichamp, D.A. (1989) Process Dynamics and Control, John Wiley & Sons, Inc.
Stephanopoulos, G. (1984) Chemical Process Control — An Introduction to Theory and Practice, Prentice-Hall.

2

Simulations

2.1 Simulating Processes Composed of Differential Equations

In this section, the numerical derivative will be briefly introduced, followed by a simple method
to solve first-order and high-order differential equations.

2.1.1 Numerical Derivative and Solving First-Order Differential Equations
Consider the following derivative definition:

dOF {w} — lim {w} (2.1)
=t At—0

dt to+At—ty At—0 At

It should be noted that the derivative can be approximated by choosing a small Az instead of
At — 0 as shown below.

dy(2)
dr

1=ty At

where At is a small value. Equation (2.2) is called a numerical derivative.

The MATLAB program in Table 2.1 is used to calculate the numerical derivative of
y()=1 +3t+ 1 at t=1 and compares it with the analytical value. As expected, the
numerical derivative value (5.000 009 999 989) is very close to the analytical derivative value
(5.000 000 000 000).

If the Az value is decreased further, then the accuracy of the numerical derivative will be
improved. But, there is a practical limitation in improving the accuracy because the round-off
error increases as At decreases.

The same principle can be applied to solve differential equations. Consider the following
differential equation:

=+ y0)=1 (2.3)

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

46 Process Identification and PID Control

Table 2.1 MATLAB code for the numerical derivative.

numerical_derivative.m f.m command window
t0=1.0; function [y]=f (t) >> numerical_derivative
delta_t=0.00001; y=t"2+3*t+1; Numerical_ derivative =
end 5.00000999998917
y0=£f (t0) ; Analytical_solution =5

y_delta=f (tO+delta_t);
dy_dt = (y_delta-y0)/
delta_t;

Numerical_derivative =
dy_dt
Analytical_solution =
(2*t0+3)

The derivative dy(#)/d¢ can be approximated as follows:

dy(r) _y(t+41) —y(1)

24
dt At 24)
Then, (2.3) can be rewritten as follows:
t+ At) —y(t
YHA) =YW _ iy 44 (25)
At
y(t+A) =y(t) + (—y(t) +1)At (2.6)

Now, y(t), t = At, 2At, . . ., can be obtained for the given initial value y(0) by repeating (2.6).
For example:

t=0 and y(0) = 1—y(Ar) = y(0) + (—y(0) + 0)Ar (2.7)
1= At — y(2A1) = y(Ar) + (= y(Ar) + Ar)At (2.8)

t = 2A1 — y(3A1) = y(2A1) + (— y(2A1) + 2A1)At (2.9)

1 = 3A1 — y(4A1) = y(3A1) + (— y(3A1) + 3A1)At (2.10)

It is straightforward to apply the same method to the more general case of dy(¢)/df=
g(y(®), 1). For example:

y(t+Ar) = y(t) +g(y(2), 1)At (2.11)

t=0, y(0)=yo—y(Ar) =y(0)+g(»(0),0)As (2.12)

t = At —y(2A1) = y(Ar) + g(y(At), Ar)At (2.13)

Simulations 47

t = 2At — y(3At) = y(2At) + g(y(2At), 2At) At (2.14)

t = 3At— y(4Ar) = y(3A1) + g(y(3A1), 3A1) At (2.15)

The above-mentioned method to solve differential equations (2.3) is called the Euler
method. The MATLAB code in Table 2.2 is used to calculate y(¢), t=0.01, 0.02, 0.03, ...,
for the given initial value y(0) = 1; the simulation results are given in Figure 2.1.

Table 2.2 MATLAB code to solve the first-order differential equation using the Euler method.

eulerl.m gl.m
clear; function [dy_dt]l=gl(y, t)
t=0.0; dy_dt=-y+t;
y=1.0; end

t_final=10.0;

delta_t=0.01;

n=round (t_final/delta_t);

for i=1:n
t_array(i)=t;
y_array(i)=y;
dy_dt=gl(y,t);
y=y+dy_dt*delta_t; $Eqg. (2.11)
t=t+delta_t;

end
figure (1) ;
plot(t_array,y_array); command window

>>eulerl

10

Figure 2.1 Simulation result of Table 2.2.

48 Process Identification and PID Control

2.1.2 Solving High-Order Differential Equations

The state-space representation (1.175)—(1.183) should be used to solve a high-order differential
equation. For example, consider the following high-order differential equation:

&y (1) +3d2y(l) LU _ du(n) du()

=—F -5—-= t 2.16
dr dr? a Y () dr? dr +u(t) ()
u(t)y=1 fort>0 (2.17)

d*y(1) dy(7) du(7)
az |, " ar |, ¥0)=0, — . u(0) =0 (2.18)

To solve the differential equations (2.16)—(2.18), they should be rewritten in the correspo-
nding state-space representation (2.19)—(2.24) according to (1.175)—(1.183):

dx(r)
o = Ax(t) + Bu(t) (2.19)
y(t) = Cx(r) (2.20)
x(0)=[0 0 o] (2.21)
00 —1
A=1|1 0 -3 (2.22)
01 -3
B=[1 -5 1" (2.23)
c=[0 0 1] (2.24)

Now, it is straightforward to solve the high-order differential equation by repeating the
equation
x(t+At) = x(t) + (Ax(t) + Bu(t))At (2.25)

The MATLAB code in Table 2.3 is used to calculate y(#), t=0.01, 0.02, 0.03, ..., for
(2.16)—(2.18) and the simulation results are given in Figure 2.2.

Example 2.1
Obtain the numerical derivative dy(z)/dz at t =0.5 with A¢=0.01 for the function

y(t) = texp(—31) (2.26)

Solution

dy(1) %y(0.5—|—0.01) —(0.5) 01132 (227)
dr |_gs 0.01 ' '

Simulations 49

Table 2.3 MATLAB code to solve the high-order differential equation using the Euler method.

euler2.m g2.m
clear; function [dx_dt]=g2 (y,x,u)
t=0.0; A=[00-1; 10-3; 01 -31;
x=[000]"; B=[1-51]";
y=0; dx_dt=A*x+B*u;
C=[001]; end

t_final=10.0;
delta_t=0.01;
n=round (t_final/delta_t);
for i=1:n
t_array(i)=t;
y_array (i) =y;
u=1.0;
dx_dt=g2 (y,x,u) ;
x=x+dx_dt*delta_t; $Eq. (2.25)

y=C*x;

t=t+delta_t;
end command window
figure (1) ; >> euler?

plot(t_array,y_array);

|
-
(&)}

t

Figure 2.2 Simulation result of Table 2.3.

Example 2.2
Obtain the numerical derivatives dy(x, z)/dx, 82y(x, z)/ax2 and azy(x, z)/0x0z at x=10.5 and
z=0.3 with Ax=0.01 and Az =0.005 for the function

y(x,z) = xexp(—3z) + x* + 2z (2.28)

50 Process Identification and PID Control

Solution
. .01,0.3) — . .
y(x,z) %y(05—|—00 ,0.3) y(05’03):1.4166 (2.29)
X |y_05:203 0.01
a 0.5+0.02,0.3) —y(0.54+0.01,0.3
0% 40540012203 0.01
32)’(36, 2) N ay(x, Z)/8x|x:0.5+0401,::0.3 — dy(x, Z)/8x|x:0.5,z:0.3
ax? x=0.5,2=0.3 - 0.01
¥(0.5+0.02,0.3) — y(0.5+0.01,0.3) y(0.5+0.01,0.3) — y(0.5,0.3)
0.01 0.01
_ = 2.0000
0.01

(2.31)

Fy(x,z) _ 9 (dy(x,2) N 3y(x,2)/0z],_g 5 0.01,-—03 — (%,2) /92| _g5-—03

0x0z | _05.-03 ~ox 0z x=0.5,2=0.3 - 0.01
¥(0.5+0.01,0.3+0.005) —y(0.5+0.01,0.3) ¥(0.5,0.3+0.005) —y(0.5,0.3)
0.005 0.005
= =—1.21
0.01 06

(2.32)

Example 2.3
Simulate the following first-order differential equation using the Euler method with Az =0.01:

Oy a0 =1 (2.33)
u(t) = {(1) 1 (2:34)

Solution The MATLAB code in Table 2.4 is used to simulate the process in (2.33) and (2.34)
and the simulation results are given in Figure 2.3.

2.2 Simulating Processes Including Time Delay

The historical data of a signal need to be stored to simulate the delayed signal. Consider the
array variable si_u(1 x m vector) that stores the historical data of u(?) in the following form:

hou() L h_u(m —3) h_u(m—2) h_uim—1) h_u(m)
ut—(m—DAH u(t — 3Ar) u(t — 2Ar) u(t — Ar) u(t)

where At is the sampling time. /i_u(m) should be the present value of u(¢) and h_u(m — 1)
should be the delayed u(7) by as much as one sampling time. That is, when a new present value

Simulations

51

Table 2.4 MATLAB code to simulate Example 2.3.

euler_ex3.m

clear;

t=0.0;

y=1.0;

t_final=10.0;

delta_t=0.01;

n=round (t_final/delta_t);

for i=1:n
t_array(i)=t;
y_array (i) =y;
if (t<2.5) u=0; else u=1; end $Eq. (2.34)
dy_dt=g_ex3 (y,u);
y=y+dy_dt*delta_t; $Eqg. (2.11)
t=t+delta_t;

end

figure (1) ;

plot(t_array,y_array);

g_ex3.m

function [dy_dt]l=g_ex3(y,u)
dy_dt=-y+u;
end

command window
>> euler_ex3

0.8f

0.6

A

041

021

Figure 2.3 Simulation result of Example 2.3.

comes in, i_u(j),j=1,2,...,m — 1, should be replaced by h_u(j + 1),j=1,2,...,m —1,and

h_u(m) should be replaced by the new value.

Now, assume that the time delay is 0, then nl =round(6/At) is the number of the sampling
time corresponding to 6. Where, round(x) rounds x off to the nearest integer. Then, /_u

(m — n6) corresponds to the delayed signal u(z — 0).

For example, let us obtain u(¢# — 1) for the signal

u(t) =1 —exp(—1),

1>0 (2.35)

(2.36)

52 Process Identification and PID Control

Table 2.5 MATLAB code to simulate the pure time delay.

delay_u.m

clear;
h_u=zeros (1,1000);
theta=1.0;
t_final=5.0;
delta_t=0.01;
t=0.0;
n=round (t_final/delta_t);
n_theta=round (theta/delta_t);
for i=1:n
t_array(i)=t; $present time
u=l-exp(-t); $present value

forj=1:999
hu(j) = hou(j + 1)
end update the array variable

h_u(1000) = u; % u(t)

u_array(i) = u; %u(t)
u_delay_array(i)=h_u(1000-n_theta); %delayed
t=t+delta_t;

end
figure (1) ;
plot (t_array,u_array,':',t_array,u_delay_array,'-');

legend ('u(t)','u_{delay} (t)");

command window

>>delay_u

The MATLAB code in Table 2.5 simulates the time delay and Figure 2.4 gives the simulation

result.

.....
.

0.8}

0.4}

02} &

Figure 2.4 Simulation result of the pure time delay.

For the other example, consider the following high-order differential equation with time

delay. This is the same as (2.16)—(2.18) except for the time delay.

Simulations 53
1
0.5 1
0 i
=
—05 i
-1 i
—-1.5 1 1 1 !
0 2 4 6 8 10
t
Figure 2.5 Simulation result of Table 2.6.
Table 2.6 MATLAB code to solve the high-order differential equation with time delay using

the Euler method.

euler2_delay.m

clear;
t=0.0;
x=[000]';
y=0;
t_final=10.0;
delta_t=0.01;
n=round (t_final/delta_t);
C=[001];
theta=0.5; % time delay
h_u=zeros (1,1000);
n_theta=round (theta/delta_t);
for i=1:n

t_array(i)=t;

y_array (i)=y;

u=1.0;

for j=1:999
h_u(j)=h_u(j+1);

end

h_u(l1000)=u; %u(t)
dx_dt=g2(y,x,h_u(1000-n_theta));
x=xX+dx_dt*delta_t;
y=C*x;
t=t+delta_t;

end

figure (1) ;

plot(t_array,y_array);

g2.m

function [dx_dtl=g2(y,x,u)
A=[00-1;10-3;01-3];

B=[1-51]';
dx_dt=A*x+B*u;
end

command window
>>euler2_delay

54 Process Identification and PID Control

dEy() L dEy(r) L dy(o) d®u(t—0.5) _du(t—0.5)
T +3 i +3 a +y(1) = a7 -5 = +u(t—0.5) (2.37)
u(t)=1 fort>0, u(t)=0 fort<0 (2.38)
&y(7) dy(z) du(1)
== —=y0)=0, = u(0) =0 (2.39)
de o dr | dz |

The MATLAB code in Table 2.6 simulates (2.37)—(2.39) and Figure 2.5 gives the simulation
result.

Example 2.4
Simulate the following first-order differential equation using the Euler method with A7 =0.01:

dy(t
% = —y(O)+u(t—05), y(0)=1 (2.40)
u(t)=1 fort>25, u(t)=0 for0<r<25 u(t)=1 fort<0 (2.41)

Solution 1In this example, the historical data i_u(j)=1,j=1, 2, ..., 1000, should be initially
filled with 1, because u(f)=1 for t<0. The MATLAB code to simulate the process
(2.40)—(2.41) and the simulation results are given in Table 2.7 and Figure 2.6 respectively.

Example 2.5
Simulate the following second-order differential equation using the Euler method with
At=0.01:

d>y(¢) _dy(r) du(t—0.2)
2 3 y(f) = — 15— 425u(1—0.2 2.42
e T3 g o T25u) (242)
u(t)=1 fort >3, u(t)=05 for0<r<3, u(t)=03 fort<0 (2.43)
dy(t
SO o1, yo) =08 (2.44)
dr |,

Solution Inthis example, the initial values are not zero. So, (1.184)—(1.186) should be used to
determine the initial state x(0). Then, the state-space realization is

dﬁ(f) - {(1) :;Z]X(IH {2_'51/,25/2]140—0-2) (2.45)
y(0)=[0 1]x() (2.46)

X0)=x""y (2.47)

Simulations

55

Table 2.7 MATLAB code to simulate Example 2.4.

euler_delay_exl.m

clear;
t=0.0;
y=1.0;
t_final=10.0;
delta_t=0.01;
n=round (t_final/delta_t);
theta=0.5; % time delay
h_u=ones (1,1000); %filledwith 1
n_theta=round (theta/delta_t);
for i=1:n

t_array(i)=t;

y_array (i) =y;

if (t<2.5) u=0; else u=1l; end

for 3=1:999
h_u(j)=h_u(j+1);
end

h u(1000)=u;
dy_dt=g_delay_exl(y,h_u(1000-
n_theta));
y=y+dy_dt*delta_t;
t=t+delta_t;
end
figure (1) ;
plot(t_array,y_array);

g_delay_exl.m

function [dy_dt]=g_delay_exl (y,u)
dy_dt=-y+u;
end

command window
>>euler_delay_exl

0.8t

0.6

A

04

0.2+t

o

t

Figure 2.6 Simulation result of Example 2.4.

56

Process Identification and PID Control

|

The historical data i_u(j)=0.3,j=1,2, ..

A

3 . 5] (2.49)

., 1000, should be initially filled with 0.3, because

u(t)=0.3 for t<0. The MATLAB code to simulate the process (2.42)—(2.44) and the
simulation results are given in Table 2.8 and Figure 2.7 respectively.

Table 2.8 MATLAB code to simulate Example 2.5.

euler_delay_ex2.m

clear;

A=[0-1/2; 1-3/2]1;
B=[2.5/2; -1.5/21;

C=[

P=[0.8; -0.1-C*B*0.3]; %Eg. (2.49)
K=[C; C*A]l; SEq. (2.48)
x=inv (K) *P; $Eq. (2.47)

t=0.0;

Yy

t_final=10.0;
delta_t=0.01;
n=round (t_final/delta_t);
theta=0.2; % time delay
h_u=0.3*ones (1,1000) ;
n_theta=round (theta/delta_t);
for i=1:n
t_array(i)=t;
y_array (i) =y;
if (t<3.0 & t>=0) u=0.5; end
if (t>=3.0) u=1.0; end
for j=1:999
h_u(j)=h_u(j+1);
end
h u(1000)=u;
dx_dt=g_delay_ex2(y, x,
h_u(1000-n_theta));
x=x+dx_dt*delta_t;
y=C*x;
t=t+delta_t;
end
figure (1) ;
plot(t_array,y_array);

g_delay_ex2.m

function [dx_dt]=g_delay_ex2 (y,x,u)
A=[0-1/2;1-3/2];

B=[2.5/2; -1.5/21;

dx_dt=A*x+B*u;

end

command window

>>euler_delay_ex?2

Simulations 57

74|

0.5
0

Figure 2.7 Simulation result of Example 2.5.

2.3 Simulating Closed-Loop Control Systems

If the process input is a function of the process output then it is a closed-loop control system. For
example, consider the following control system:

2%’) — () +5u(1—03) (2.50)
u(t) = 0.3(ys(2) — (1)) (2.51)

where (2.50) is the process of which the input is u(?) and output is y(z). Equation (2.51) is a
controller which determines the process input on the basis of the process output y(#) and the
external signal y4(?). So, the system (2.50) and (2.51) is a closed-loop control system. Previous
simulation techniques can be extended to the closed-loop control system in a straightforward
manner. Consider the following examples.

Example 2.6
Simulate the following third-order differential equation using the Euler method with Az =0.01:

dEy(r) &y dy(e) d?u(t—0.5) du(t —0.5)
e +3 a2 +3 P +y(t) =0.1 a7 -0.8 T +u(t—0.5) (2.52)
u(t) =12(1—y(t)) fort >0, u(t)=0 fort<0 (2.53)
2
d ygt) _OO oy z0, Ol _ 00 (2.54)
dt =0 dr =0 dr t=0

Solution 1In this example, the historical data i_u(j)=0,j=1, 2, ..., 1000, should be initially
filled with 0 because u(¢) = 0 for # < 0. The MATLAB code to simulate the process (2.52)—(2.54)
and the simulation results are given in Table 2.9 and Figure 2.8 respectively.

58

Process Identification and PID Control

Table 2.9 MATLAB code to simulate the closed-loop control system of Example 2.6 using

the Euler method.

euler_closed_exl.m

clear;
t=0.0;
x=[000]";
y=0;
t_final=20.0;
delta_t=0.01;
n=round (t_final/delta_t);
C=[001];
theta=0.5; % time delay
h_u=zeros (1,1000);
n_theta=round (theta/delta_t);
for i=1:n
t_array(i)=t;
y_array(i)=y;
u=1.2*(1.0-y); %Eqg. (2.53)
u_array(i)=u;
for j=1:999
h_u(j)=h_u(j+1);
end
h_u(1000)=u;
dx_dt=g_closed_exl (y,x,h_u
(1000-n_theta)) ;
x=x+dx_dt*delta_t;
y=C*x;
t=t+delta_t;
end
figure (1) ;
plot(t_array,y_array);
figure (2) ;
plot(t_array,u_array);

g_closed_exl.m

function [dx_dt]l=g_closed_exl (y,x,u)
A=[00-1; 10-3; 01-31;
B=[1-0.80.11";

dx_dt=A*x+B*u;

end

command window

>> euler_closed_exl1

Example 2.7

Simulate the following third-order differential equation using the Euler method with Az =0.01:

dy(1)

Ey(r) | ()
3 3
ds + dr? + dt

u(t) = 1.5(ys(1) = (1)) + 1.5

+y(t)=—-03

d(ys(f) — (¢
dt

du(t—0.2)
T +u(l—0.2) (2.55)

y(1)) fort >0, u(t)=0 fort<0 (2.56)

ys(t) = 1.0 fort>1, y(¢1)=0.0 forz<1 (2.57)
&y(1) dy(1) du(r)

_ 0) =0 — u(0) =0 2.58

o A W0 =0, — » u(0) (2.58)

Simulations 59

Figure 2.8 Simulation results in Example 2.6.

Solution 1In this example, the historical data i_u(j) =0, j=1, 2, - - -, 1000 should be initially
filled with zero because u(f)=0 for t<0. The MATLAB code to simulate the process
(2.55)—(2.58) and the simulation results are given in Table 2.10 and Figure 2.9 respectively.
It uses the numerical derivative to implement d(ys(¢) — y(¢))/dz.

2.4 Useful Numerical Analysis Methods

In this section, simple numerical analysis methods required to design the controller and
simulate the dynamics of the control system are introduced.

2.4.1 Least-Squares Method

The least-squares method has been widely used to fit data to a linear function model. It
estimates the model parameters (2.60) by minimizing the objective function of Q(P).

min
P

Q(P) = Z (vi — %)2} (2.59)

i=1

60

Process Identification and PID Control

Table 2.10 MATLAB code to simulate the close-loop control system of Example 2.7 using

the Euler method.

euler_closed_ex2.m

clear;
t=0.0;
x=[000]';
y=0.0; yb=0.0; ys=0.0; ysb=0.0;
t_final=15.0;
delta_t=0.01;
n=round (t_final/delta_t);
C=[001];
theta=0.2; % time delay
h_u=zeros (1,1000);
n_theta=round (theta/delta_t);
for i=1:n

t_array(i)=t;

y_array(i)=y;

if(t>1) ys=1.0; elseys=0.0; end
$Eg. (2.57)

u=1.5*% (ys-y)+1.5*% ((ys-y) -
(ysb-yb)) /delta_t; $Eqg. (2.56)

ysb=ys; yb=y; % one sampling
before

u_array(i)=u;

for j=1:999

h_u(j)=h_u(j+1);

end

h_u(1000)=u;

dx_dt=g_closed_ex2 (y,x,h_u
(1000-n_theta)) ;

x=x+dx_dt*delta_t;

y=C*x;

t=t+delta_t;
end
figure (1) ;
plot(t_array,y_array);
figure (2) ;
plot(t_array,u_array);

g_closed_ex2.m

function [dx_dt]l=g_closed_ex2 (y,x,u)
A=[00-1; 10-3; 01-3];
B=[1-0.30.0]";

dx_dt=A*x+B*u;

end

command window

>> euler_closed_ex?2

Vi = D101+ Dapai T P33t PP

where i)la [327 [337 T

i=1,2,3,....m (2.60)

, D, are the model parameters. y; and ¢, ; are the given data.

Equations (2.59) and (2.60) can be rewritten as (2.61) and (2.62):

min[Q(P) = (¥ = ¥)" (Y - V)]

P

=oP

(2.61)

(2.62)

Simulations 61

u(t)

N —

0 5 10 15
t

Figure 2.9 Simulation results in Example 2.7.

where the matrices and vectors of (2.61) and (2.62) are

yi Y1 P11 P21 0 Pui)41
2 . Vs P2 P2 P . D

Y=|. , Y=, , =1, . . , P=1. (2.63)
Ym)A]m QDIA,m Pom gDn,m ﬁn

Y, f’, @ and P are an mx 1 vector, an m X 1 vector, an m X n matrix and an n x 1
vector respectively. Note that the solution of the optimization problem (2.61) can be
obtained by finding P that makes the gradient of Q(P) zero. So, consider the following
gradient of Q(P):
90(P n'
k) —2<i) (Y—¥) = —20" (¥ — ®P) (2.64)
oP oP

62 Process Identification and PID Control

where the definitions of the gradients in (2.64) are

d0(P) _[aoP) ao(P) a0(P)]"

S a oL &= (2.65)
oP P, P, ap,,
E
P s op,
o7 W Wy W
|, o op, (2.66)
ap . . o
B B
L 9P, Py, |

From (2.64), it is clear that the solution of the optimization problem (2.61) should
satisfy (2.67). R R
OT(Y —DP) =PTY —DTPP =0 (2.67)

From (2.67), obtain the optimal solution:
P =@ [Ty (2.68)

It is remarkable that the estimate (2.68) minimizes the sum of the squares’ errors (2.59).
So, (2.68) is called the least-squares method.

Example 2.8
Obtain the model of which the structure is given in (2.69) to fit the (x, y) data of (1.1, 3.1),
(1.9,5.1), (3.1, 6.9), (4.0, 9.2) in the sense of least squares.

Y =D+ hx (2.69)
Solution From the data:
3.1 1 1.1
5.1 1 19
Y=1l6o|" ®= 1|1 31 (2.70)
9.2 1 4.0

Then, the least-squares method (2.68) results in the following estimates:

P=[@'® [@TY] = [0'9853} 2.71)

2.0157

Thatis, p, = 0.9853 and p, = 2.0157. The estimated model output (2.62) for the given x and
the estimated P is

3.2026
- 4.8152
7.2340
9.0482

(2.72)

Simulations

63

Example 2.9
Obtain the model parameters of 7 and £ in

™G (iwp) it + (4728 — 277)|G i) P’ = 1 — |Glioy) |,

Solution Letus define p, = 7, ¢, , = |G(iwy) [0}, p,
and y; = 1 — IG(iwy)l*. Then, 7 :j)}/4 and & =

we =0.1k, k=1,2,3,...,10
(2.73)

(2.74)

= 4728 272, ¢y = |Gliwp)[0}

\/ (P, +272)/(47%). The source code for the

least-squares method is shown in Table 2.11. The estimates are 7= 1.424 and £ =0.917. The
model output and the real data are compared in Figure 2.10. This is one of the model reduction

methods, which will be discussed later in this book.

Table 2.11 MATLAB code to solve Example 2.9 using the least-squares method.

ls_ex2.m

clear;

for k=1:10

w(k)=k*0.1;
G(k)=g_ls_ex2 (w(

(w (k)

y(k,1)=1-(abs (G(
bs
S

);
phi_1(k,1)=(a A
phi_2(k,1)=(ab

end

PHI=[phi_1 phi_2];
Y=y;

P_hat=inv (PHI'*PHI) *PHI'*Y;
tau=P_hat (1)~ (1.0/4.0);
xi=((P_hat (2)+2*tau”~2)/ (4*tau"2))
~0.5;

Y_hat=PHI*P_hat;

k)) i
k))”
G (k)
G(k

2
)
(k))

(
(

fprintf ('P_hat = $5.3f $5.3f
\n',P_hat(l),P_hat(2));
fprintf('tau=%5.3f xi=%5.3f

\n', tau, x1i) ;

figure (1) ;
plot(1:10,Y,1:10,Y_hat);
legend('real data' , 'model output') ;

g_ls_ex2.m

function [G]=g_ls_ex2 (w)
s=1*w;

G=1/(s+1)"3;

end

command window

>> 1s_ex2
P_hat=4.1162.764
tau=1.424 xi=0.917

2.4.2 Root-Finding Methods

A root-finding method finds the x value that satisfies f{x) =

0. This section introduces the

bisection method, followed by the Newton—Raphson method.

64 Process Identification and PID Control

0.8}
0.6}
0.4} real data
----e---- model output
0.2} 1
0 L L L L L L L !
1t 2 3 4 5 6 7 8 9 10

data

Figure 2.10 Estimation results of the least-squares method in Example 2.9.

The bisection method finds the root by reducing the interval (in which the root exists) by
half at each iteration. Consider Figure 2.11 to understand the principle of the bisection
method. It is assumed that the initial interval is chosen to include the root. Let the left-hand-
side value of the interval be xi and the right-hand-side value of the interval be xi and the
interval is xg — xr. In the first iteration, the bisection method divides the initial interval by 2
and calculates the middle point xp; = (xg + xr.)/2. If the sign of f(xg) and the sign of f{x)) are
the same, then it reduces the interval to half by updating the right-hand-side value as xg = x 1.
If the sign of f(xgr) and the sign of f(x);) are not the same, then it updates the left-hand-side
value as x = x);. In the second iteration, the bisection method repeats the same procedure
with the new interval. It repeats the procedure and updates the interval until the interval
becomes a sufficiently small value.

f(x) root

A\ 4

Initial interval

Interval of the first iteration

J

= |nterval of the second iteration

Figure 2.11 Graphical representation of the bisection method.

Simulations

65

Example 2.10

Obtain the root of f{x) =exp(x) 4+ 3x — 20 with the initial interval between x = —1 and x = 5.

Solution The source code for the bisection method and the estimated root (x =2.520 74) are

shown in Table 2.12.

Table 2.12 MATLAB code for the bisection method in Example 2.10.

bs_exl.m

g_bs_exl.m

clear; function [f]=g_bs_exl (x)
x_ L=-1; f=exp(x)+3*x-20.0;
x_R=05; end

while (1)

command window

x_M=(x_L+x_R)/2.0;
f_M=g_bs_exl (x_M);
)

f_R=g_bs_exl (x_R); >>Dbs_exl

if (f_.M*f_R > 0) x=2.52074 £=0.00000
x_R=x_M;

else
x_L=x_M;

end

if (abs (x_R-x_L)<0.000000001)
break; end
end
fprintf('x=%$7.5f £ =%7.5f\n',x_1L,
f R);

The Newton—Raphson method finds the root of f{xx) = 0 by approximating the given function
with a linear function and calculating the root of the linear function in a repetitive manner. Let
us approximate the given nonlinear function f{x) with the first-order Taylor series expansion at
the kth iteration (x = x;) as below:

d
)~ FE) S () (275)

X=X|

Then, the approximated root (x = x;, ;) of the next iteration can be obtained by setting
fix)=01in (2.75) as shown in (2.76):

J(xe)

df/dx (270

Xk+1 = Xk

The Newton—Raphson method finds the root by repeating (2.76) until the distance between
Xx 1 and x; or the absolute value of f(x; ;) becomes a sufficiently small value.

As mentioned above, the Newton—Raphson method uses the approximated linear function to
calculate the next approximated root. It should be noted that the approximation using the linear
function results in serious linearization errors if the original function of f{x) is highly nonlinear.
Then, the performance of the Newton—Raphson method will be degraded significantly,

66 Process Identification and PID Control

resulting in a poor convergence rate or divergence. To incorporate such a case, the following
modification can be used:

J(xx)
o (2.77)
df/dx|,_, +B

Xnew = Xk —

If |[f (Xnew)| < [f(xx)], set B =B/1.5, Xi+1 = Xnew and perform the next iteration (2.78)
If |f (xnew)| > If(xx)|, set B = 1.58, xr+1 = Xx (no update) and perform the next iteration

(2.79)

where the initial 8 value is a small positive value. [f{xx;)l denotes the absolute value of f{x;). This
rule of thumb updates x only if the function value decreases; that is, [f{x,ew)! < [f(xp)l.

The above-mentioned derivations can be extended to multivariable and multifunction
systems. Consider the following root-finding system:

fl(-x17x27"'7-xl‘l) :O
=0

J.cz(xl, X2, Xp) (2.80)

ﬁl(xlax27 e 7xn) =0

Let us introduce the following vector representation to describe (2.80) more simply.

F(X)=0 (2.81)

whereX:[xl Xy - x,,]TandF:[fl o fn]T.Equation(2.81)canbelinear—

ized by the first-order Taylor series expansion as follows:
F(X) = F(Xx) + VF|X:Xk (X—X) (2.82)

where VF is the gradient of the nonlinear function (2.80) or (2.81).

R,
x, x, 0 oxy,
oy >
VF— |ox v 0 ox, (2.83)
W Iy
Lox; Oxp 9xp

Now, the approximated roots of the next iteration (2.84) can be obtained by setting F(X) =0
in (2.82).

Xiy1 =X — (VF|x_x,)~ 'F(X¢) (2.84)

The Newton—Raphson method for the multivariable and multifunction system repeats (2.84)
until the norm of X , | — X or the norm of F(X},) becomes a sufficiently small value. This

Simulations 67

method also shows a poor convergence rate or divergence for a highly nonlinear function
system. To incorporate the case, the following modification can be used:

Xnew - Xk - (VF|X:Xk +BI) N IF(Xk) (285)

If [|F(Xnew)|| < [[F(Xk)|], set B =B/1.5, Xi+1 = Xnew and perform the next iteration (2.86)

If [|F(Xnew)|| = [JF(Xk)], setB = 1.58, Xk +1 = Xk (no update) and perform the next iteration
(2.87)

where the initial 8 value is a small positive value and I is the # X n unit matrix. ||F(X})|| denotes
the Euclidean norm of F(X}). This rule of thumb updates X only if the function value decreases
(that iS, ||F(Xnew)‘ | < ||F(Xk)| |)

Example 2.11
Obtain the root of f{x) =exp(x) + 3x — 20 with the initial value of xy=—1.0.

Solution The source code for the Newton—Raphson method and the estimated root (x = 2.520
74) are shown in Table 2.13.

Table 2.13 MATLAB code for the Newton—Raphson method in Example 2.11.

nr_exl.m g_nr_exl.m
clear; function [f]l=g_nr_exl (x)
x=-1; f=exp(x)+3*x-20.0;
beta=0.001; end
while (1)
f=qg_nr_exl(x); deri_nr_exl.m
df =deri_nr_exl (x);
x_new = x-f/ (df +beta) ; function [df]=deri_nr_exl (x)
f_new=g_nr_exl (x_new); df = exp (x) +3;
if (abs (f_new) < abs (f)) end
beta =beta/1.5;
X = X_New; command window
else
beta = beta*1.5; >>nr_exl
end x=2.52074 £=0.00000
i1f (abs (f_new)<0.000000001) break; end
end
fprintf(1]>'x=%7.5f £ =%7.5¢f
\n', x, f_new) ;

Example 2.12
Obtain the roots of fi(x1,x2) =x]+x2+exp(2x2)—2=0 and f(x1,x2) =
x1x3 +exp(x; —1) — 1 = 0 with the initial values of x; 0 =0.5 and x,(=0.5.

Solution The source code for the Newton—Raphson method and the estimated roots (x; = 1.0
and x, =0.0) are shown in Table 2.14.

68 Process Identification and PID Control

Table 2.14 MATLAB code for the Newton—Raphson method in Example 2.12.

nr_ex2.m g_nr_ex2.m
clear; function [f]l=g_nr_ex2 (x)
x=1[0.5; 0.5]; £(1,1) =
beta=0.001; X (1) "2+x(2)texp (2*x(2))-2;
while (1) £f(2,1) =
f=g_nr_ex2(x); x (1) *x(2)"3+exp(x(1)-1)-1;
df =deri_nr_ex2(x); end

x_new = x-inv (df +beta*eye (2,2))*f;
f_new=g_nr_ex2 (x_new);

if (abs (f_new) < abs (f)) deri_nr_ex2.m
beta =beta/1.5;
X = X_new; function [df]=deri_nr_ex2(x)
else df (1,1) =2*x(1);
beta =beta*1.5; df (1,2) = 1+2%exp (2*x(2)) ;
end df (2,1) =x(2)"3+exp (x(1)-1);
if (abs (f_new)<0.000001) break; end df (2,2) =3*x (1) *x(2)"2;
end end
fprintf('x(l) =%7.5f x(2) =%7.5f
\n', x(1),x(2));
fprintf('f(l) =%7.5f £(2) =%7.5f command window

\n', f_new(1l),£(2));
>> nr_ex2

x(1) =1.00000x(2) =0.00000
£(1) =0.00000 £(2) =0.00000

Example 2.13
Obtain the root of f{x) =exp(x) + 3x — 20 with the initial value of xy = —1.0. Use a numerical
derivative to calculate the derivative in the Newton—Raphson method.

Solution The source code for the Newton—Raphson method with the numerical derivative and
the estimated root (x =2.52074) are shown in Table 2.15.

2.4.3 Numerical Integration

The numerical integration method has been widely used to implement the process controller
and simulate the dynamic behavior of the closed-loop control system. Two simple methods will
be presented in this section.

The simplest one is the Euler integration method, which is sufficient for most cases in the
research area of the process control and identification. Consider the differential equation
ds(¢)/dt = e(¢). Then, s(r) is the integral of e(¢). From the Euler approximation ds(#)/dt~
(s(t + Ar) —s(¢))/At, the numerical integration s(¢ + Af) =s(¢) + e(f)At is obtained. The
integral with respect to ¢ can be calculated by repeating s(t + Af) =s(¢) + e(H)At.

On the other hand, the other Euler approximation ds(z)/dz =~ (s(¢) — s(t — At))/At (that is,
s(t) =s(t — At) + e(t)Af) is also possible. Then, the numerical integration s(t + Af) =s(f) +
e(t + Ar)At is obtained. The trapezoidal integration method s(z + Af) =s(¢) + (e(t + Ar) +

Simulations 69

Table 2.15 MATLAB code for the Newton—Raphson method in Example 2.13.

nr_ex3.m g_nr_ex3.m
clear; function [f]l=g_nr_ex3 (x)
x=-1; f=exp(x)+3*x-20.0;
beta=0.001; end
while (1)

f=g_nr_ex3(x);
df =deri_nr_ex3(x);
x_new = x-f/ (df +beta) ;

f_new=g_nr_ex3(x_new); deri_nr_ex3.m
if (abs (f_new) < abs(f))
beta =beta/1.5; function [df]=deri_nr_ex3(x)
X = X_new; f_delta=g_nr_ex3(x+0.0001);
else f=g_nr_ex3(x);
beta =beta*1.5; df = (f_delta - £f)/0.0001;
end end

if (abs (f_new)
<0.000000001) break; end

end command window
fprintf ('x=9%7.5ff=%7.5¢f
\n', x, f_new) ; >>nr_ex3

x=2.52074 £=0.00000

e(1))At/2 is obtained by averaging the two Euler approximations s(z + A¢) =s(¢) + e(?)At and
s(t + At)=s(t) + e(t + Ar)At. The trapezoidal method is usually superior to the Euler
method. But, the difference of the performances is negligible for most cases if a sufficiently
small At is used.

Example 2.14
Obtain the numerical integration of fix) =exp(x) + 3x —20 from x =0 to x =1 using the
Euler method and the trapezoidal method.

Solution The source code for the Euler method and the trapezoidal method and the results are
shown in Table 2.16. The analytical value is —16.781 72.

Example 2.15
Obtain s(¢) = s(0) + fé e() dr for e(t) = texp(—¢) and s(0) = 1.5 using the Euler method.

Solution The source code for the Euler method and the results are shown in Table 2.17. and
Figure 2.12 respevtively.

2.4.4 Optimization Methods

Simple optimization methods, such as the interval halving method and the Levenberg—
Marquardt method, have been used in the research area of process identification. The interval
halving method for a single-variable optimization is introduced in this section, followed by the

70 Process Identification and PID Control

Table 2.16 MATLAB code for the numerical integration method in Example 2.14.

ni_exl.m g_ni_exl.m
clear; function [f]l=g_ni_ex1 (x)
se=0.0; f=exp(x)+3*x-20.0;
st=0.0; end
x=0.0;
n=1000;

delta_x= (1.0-0.0)/n;
fori=1:n
fl=g_ni_exl(x);

se =se + fl*delta_x; command window
x=x+delta_x;
f2 =g_ni_exl(x); >>ni_exl
st=st+(£f1+£2) Euler =-16.78408
*delta_x/2; Trapezoidal =-16.78172
end
fprintf ('Euler = %7.5f
\n', se);

fprintf ('Trapezoidal =
$7.5f\n', st);

Table 2.17 MATLAB code for the numerical integration method in Example 2.15.

ni_ex2.m g_ni_ex2.m
clear; function [f]l=g_ni_ex2 (t)
se=1.5; $initial value f=t*exp(-t);
t=0.0; end
n=1000;
tf=5.0;

delta_t = (tf-0.0) /n;
fori=1:n

t_array(i)=t; command window
se_array(i)=se;
f=g_ni_ex2(t); >>ni_ex?2

se =se + f*delta_t;
t=t+delta_t;
end
figure (1) ;
plot(t_array,se_array);

Levenberg—Marquardt method to solve multivariable optimization method. The optimization
methods are to find the optimal solution that minimizes the objective function as min,f(x).
The interval halving method removes exactly half of the interval at each iteration. Consider

the three cases f{x1) <f(x2) <f(x3), fix1) = f(x2) > flxs) and f(x1) > f(xa) and flxz) < flx;)
shown in Figure 2.13. x, x1, X, X3 and xp are equally spaced. The optimal solution may exist

Simulations 71

25

s(t)
N

15 L L L L

Figure 2.12 The result of the numerical integration in Example 2.15.

f(x) 4 (x4 (x4

Figure 2.13 Three cases for the location of the optimal solution.

between xi and Xx,, X, and xg, X; and x5 for each case of f{x;) <f(x,) <f(x3), fix)) > fix,)>
f(x3), fix1) > f(x,) and f(x,) < f(x3) respectively. So, the subintervals (x, x;) and (x3, xg) can
be removed for the third case. Similarly, the subintervals (x,, xg) and (xg, x,) can be eliminated
for the first case and the second case respectively. Then, the procedure of the interval halving
method will have the following three steps. Step 1, calculate x;, x, and x; for given the interval
(x1, xr) and obtain f(x;), f(x,) and f{x3). Step 2, set xg = x, and x| = X, for the first case and the
second case respectively. And, set xg = X3 and x; = x; for the third case. Step 3, finish if the
interval is sufficiently small. Otherwise, repeat the procedure from Step 1 to Step 3.

Example 2.16
Obtain the optimal solution for the following optimization problem with the initial interval
from —5 to 3:

mxinf(x) subject tof(x) = (x—1)? (2.88)

Solution The source code for the interval halving method and the results are shown in
Table 2.18.

72 Process Identification and PID Control

Table 2.18 MATLAB code for the interval halving method in Example 2.16.

ih _exl.m g_ih_exl.m
clear; function [f]l=g_ih_ex1 (x)
x L=-5.0; f=(x-1)"2;
x_R=3.0; end
while (1)

delta_x=(x_R-x_L)/4;
x1l=x_L+delta_x;
x2=x_L+2*delta_x;
x3=x_L+3*delta_x;
fl=g_ih_ex1(x1);

f2 =g_ih_ex1(x2);
f3=g_ih_ex1(x3);

1if ((£1<£f2) & (£2<=£f3)) x_R=x2; end command window
1f((f1>=£f2) & (£2>£f3)) x_L=x2; end
1f((f1>=£f2) & (£2<=£3)) x_L=x1; >>ih_exl1l
x_R=x3; end x=1.00000
if (abs (x_R-x_L)<0.00000001) break; end £f=0.00000
end
fprintf('x =%7.5f\n', x2);

!
X
fprintf ('f =%7.5f\n', £2);

Note that the gradient of the objective function is zero at the optimal solution. On the basis of
this fact, the Levenberg—Marquardt method estimates the optimal solution by finding the roots
that make the gradient of the objective function zero.

VF(X) =0 (2.89)
where
veo [¥ ¥ o)
ox; 0xy X,
is the gradient of the objective function f(xy, X5, . . ., x,) and X = [x1x; - - - x,,]T. VF(X) can be

approximated by the first-order Taylor series expansion at the kth iteration as follows:
VF(X) ~ VF(X;) + V*F|x_x, (X —X¢) (2.90)

where V7F is the Jacobian of the objective function flxy, x,,. . ., Xp).

o o f]
x10x; Oxa0x; 9x,0x)
0% o o
VPF = | dx10x2 x2dx2 1 9x,dxz (2.91)
SR ¥ R
L 0x10x, 0xp0x, 0x,0x,

Simulations 73

Now the approximated roots of the next iteration in (2.92) can be obtained by setting
VF(X)=0 in (2.90).

X1 =Xe — (VFly_x,) ' VF(Xy) (292)

The optimal solution can be obtained by repeating (2.92) until the norm of X, , | — X or the
norm of VF(X,) becomes a sufficiently small value. But this approach would show a poor
convergence rate or divergence for a highly nonlinear function system. To incorporate such a
case, the following Levenberg—Marquardt method is introduced:

Xnew = Xk — (V?Flx_x, +8I) ' VF(Xy) (2.93)
If f (Xnew) <f(Xk), set B = B/1.5, Xk 1 = Xpew and perform the next iteration (2.94)

If f (Xnew) > f(Xk), set B = 1.58, X+1 = Xk (no update) and perform the next iteration
(2.95)

where the initial 8 value is a small positive value and I'is the # X n unit matrix. It updates X only
if the function value decreases (that is, f(Xpew) <f(Xy)).

Example 2.17
Obtain the optimal solution for the following optimization problem with the initial values
x;=2.5, x,=0.0 and x;=0.0:

min f(x1, 2, x3) subject tof(x) = (x; — 1)*(x2 —2)> + (x3 — 3)? (2.96)

X1,X2,X3

Solution The source code for the Levenberg—Marquardt method and the results are shown in
Table 2.19.

Table 2.19 MATLAB code for the Levenberg—Marquardt method in Example 2.17.

Im_exl.m g_lm_exl.m
clear; function [f]l=g_lm_ex1 (x)
x=[2.5;0.0; 0.01; f=(x(1)-1)"M*(x(2)-2)"2+(x(3) -
beta=0.001; 3)"2;
while (1) end

f=g_lm exl(x);
g=gradi_lm_exl (x);
c =conj_lm_exl(x);

x_new = x-inv (ctbeta*eye (3, 3)) *g; gradi_lm_exl.m

f_new=g_1lm_exl (x_new);

if (abs (f_new) < abs (f)) function [g]l=gradi_lm_exl (x)
beta =beta/1.5; g=[4*(x(1)-1)"3*(x(2)=-2)"2
X = X_new; (x(L)=1)"4*2*(x(2)-2)

else 2*(x(3)=-3)1;
beta = beta*1.5; end

end

74

Process Identification and PID Control

Table 2.19 (Continued)

if (abs(g) <0.00000001) break; end
end
fprintf ('x(1)=%7.5f, x(2)=%7.5f,
x(3)=%7.5f\n', x(1),x(2),x(3));
fprintf ('£=%7.5f\n', £);

command window

>> 1m_ex1
x(1)=1.01560, x(2)=1.98952,
x(3)=3.00000

£=0.00000

conj_lm _exl.m
function [c]=conj_lm_exl (x)
c= [12*(x(1)-1)"2*(x(2)-2)"28*(x(1)-1)"3*(x(2)-2) 0
8* (x(1)-1)"3*(x(2)-2) (x(1)-1)74*20
0 0 21;
end

Problems

2.1 Calculate the numerical derivative dy(#)/d¢ at t=0.3 with Az =0.005 for the following
functions using MATLAB code.

(a) y(1) = Pexp(—21) +

(t+1)°
(b) ([) _exp(—0.51)
Y =50y

2.2 Calculate the numerical derivatives dy(uy, u,, u3)/ouy, oy(uy, us, u3)/ous, dy(uy, Uy, u3)/dus,
Fy(uy, uy, us) /o, 8%y, 1z, uz)/ Oy duy and 3 y(uy, i, uz)/du;dus at uy =0.5, u = 1.0
and u3 = 0.0 with Au; =0.01, Au, =0.02 and Auz = 0.005 using MATLAB code.

(@) y(ur, uz, u3) = uup + upt3 + uyuru3
(b) y(ur, uz, u3) = exp(— ugup) + ufuz + In(uyuz + us)

2.3 Simulate the following process using the Euler method with Az =0.01:
(@ dy()

5 = YO+ Q+01y(0)u(r), ¥(0)=0.5
2 1>20
u(t) = {0 1<2.0
(®) dfj—(f)z —y(0) + (2+0.1y())u(r - 0.3), y(0) =05
2 t>2.0
u(t) = {0 1<2.0
4 3 2
@ a6 T st) w0, w0 = 11(1-5(0)
Py dEy@)| ()] _
dr o T2 o T dr o =y(0)=0

Simulations 75
dy() | &) | dy() ()
d +4——=+y(t) =u(t),u(t) = 1.1(1 — y(t
@ = A H6— P y(1) = u(t), u(t) (1-y(2)
L1 &*y(1) d*y(1) dy(1)
expl e e S R0 B0 —y0=0

(e () +3.0d{d—(tl) +y(t) =2u(t—0.5), u(t)=0.7(1-y(t))+ Oir(l —y(7))dr+1,
0

dr 2.0

+d(1),

d)é—(tt) » =y(0)=0, u(t)=0 for t<0
® dzyt(zt) +3.0dyd(;) +y(1) = 0.3d”(ld_10'5) +2u(t—0.5),u(t) = 0.7(1 — (1))
+ %J;(l —y(7))dr +1, d)é—(tt) . =y0)=0, u(t)=0 forz<0
2 —
© ddyt(;) +3.od{1—(;) Fy() =03 d”(tdto's) +2u(1—0.5),
() =0704(0) = 3(0) + 5 | 0ur) =) a7+ 03D,
ys(t) = {é ;52.260, d)(;i(;) . =y(0)=0, u(t)=0 fort<0
(h) dzyt(;) +3.odf1—(tt) +3(1) = 03@ +2u(t—0.5),
() =0704(0) = 3(0) + 5 | 0u(r) =) a7+ 03D,
V(1) = {(2) ;522(.)07 d’(’l—(tt) — 05, y(0)=02, u(t)=05 forr<0
' =0
2
o ¢ T) +2.odfj(tl) Fy(t) = u(r—0.5),
u(t) = 150(1) — (1)) + %L(ys(f) (7)) dr 415 x O‘SM
d}é—(;) » =y(0)=0, u(t)=0 fort<0

1 t>10

ys(l):{o <10 0=

-1 t>20.0
0 1<20.0

76 Process Identification and PID Control

2.4 Estimate the following model for the given data using the least-squares method:
Model y = Py x + Px?
Data

y 5 16 33 56 85

2.5 Estimate the following model for the given data using the least-squares method:
Model y =P exp(—x) + Pox?
Data

1 2 3 4 5
y 3.74 12.27 27.10 48.04 75.01

=

2.6 Transform the following model to an appropriate form and estimate the model parameters
using the least-squares method:

P 3
Model y = 7 f)@
Data !
X 1 2 3 4 5
y 1.000 1.778 1.929 1.969 1.984

2.7 Obtain the root of y(x) = x> — 5x* + 5x — 8 using the following methods:

(a) bisection method with the initial interval between x =3 and x=35;
(b) Newton—Raphson method using numerical derivative with the initial value x,=15.0;
(c) Newton—Raphson method using the analytic derivatives with the initial value xo =5.0.

2.8 Obtain the roots of the following equations using the Newton—Raphson method with the
initial values x; =1.0 and x, =1.0:

filxy, xp) = xfx% +exp(— x1)x; —6.9829

folxr, x2) = X1 + X165 +exp(— x; +2.0)(x2 +3) — 17.842

(a) use the numerical derivatives;
(b) use the analytic derivatives.

2.9 Obtain the roots of the following equations using the Newton—Raphson method with the
initial values x; = 1.0, x, =2.0 and x3 =3.0:

fi(x1,x2,x3) = xfx% +exp(—xp)x2 + x1x3 — 9.3829
Fa(x1, %2, x3) = X1 4 X1 X3 4+ exp(— x1 +2.0)(x2 +3) + (x5 — 1)> — 18.842
f3(x1,x2,x3) = x1 +x2 + x3 — 5.3000

Simulations 77

2.10 Solve the following optimization problem using the interval halving method of which the
initial interval is from 3 to 5:

min (x> — 5x? + 5x — 8)°
2.11 Solve the following optimization problem using the Levenberg—Marquardt method with

the initial values x; =0.9 and x, =1.5:

min{F(x,x) = (x; — 1.0)° + (x2 —2.0)*}

X1,X2

2.12 Solve the following optimization problem using the Levenberg—Marquardt method with
the initial values P; =0.9 and P, =1.8. Use the numerical derivatives to obtain the

Jacobian.
.. . . > Pyx; ’
Objective function : 21,112 F(Py,P,) = ; <y,< - Py x?)
Data
X1:1 X2:2 X3:3 X4:4 X5:5
y; = 1.000 v, =1.778 y3=1.929 vs=1.969 ys=1.984
Bibliography

Kreyszig, E. (2006) Advanced Engineering Mathematics, John Wiley & Sons, Inc.

Ljung, L. (1987) System Identification, Prentice-Hall, Englewood Cliffs, New Jersey.

Reklaitis, G.V., Ravindran, A. and Ragsdell, K.M. (1983) Engineering Optimization, John Wiley & Sons, Inc.

Van Overschee, P. and De Moor, B. (1994) N4SID: subspace algorithms for the identification of combined
deterministic—stochastic systems. Automatica, 30, 75.

3

Dynamic Behavior of Linear
Processes

3.1 Low-Order Plus Time-Delay Processes

The first-order plus time-delay (FOPTD) model and the second-order plus time-delay
(SOPTD) model have been widely used to design and implement process controllers. And
the terms related to the low-order plus time-delay processes are very useful for describing the
dynamic characteristics of the process or the closed-loop control system. In this section, the
dynamic behaviors of the FOPTD and SOPTD processes for the step input are derived and
the important terms are introduced.

3.1.1 First-Order Plus Time-Delay Processes
The FOPTD process is

G(s):%:%ﬂas) (3.1)

where k, T and 6 are called the static gain, the time constant and the time delay respectively. The
step input response (3.3) can be obtained by solving the differential equation (3.1) for the initial
conditions (3.2):

u(t)=d fort>0 and u(t)=0 forz<0, y(t)=0 forz<0 (3.2)

y(l)z[l—mcp(— #)}kd fort >0, y(t)=0 forr<f (33)

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

80 Process Identification and PID Control

The following equations can be obtained from (3.3):

¥(eo) = [1 —exp(— %ﬂkd

VOlps . = {1 —exp<— #)]kd

< r— 0> kd
=exp|— —
=6 v/t

Note that the first derivative of the process output is affected directly by the process
input. So, the first derivative dy(z)/d¢ has a discontinuity at # =6. Figure 3.1 brings this all
together.

= kd (3.4)

t=co

= [1 —exp(— 1)kd = 0.6321y(«) (3.5)

t=60+1

dy(?)

dt

:ﬁ:y(m), dy_(t):() fort<6 (3.6)
—y T T dr

0.6321y(c)

o

Figure 3.1 Step response of a FOPTD process.

Dynamic Behavior of Linear Processes 81

As shown in Figure 3.1, the physical meaning of the time constant is how fast the process
responds to the process input. The static gain represents how much the process output changes
for the variation of the process input. The time delay is the time required for the process input to
affect the process output for the first time.

Example 3.1
The process shows the step response of Figure 3.2 for the step input from 0 to 2 at # = 0. Obtain
the FOPTD model.

1 1
1 12 13 14 15

1
o 1+ 2 3 4 5 6 7 8 9 10 1

u(d

0.5} E

O 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 1

t

1 1 1
1 12 13 14 15

Figure 3.2 Response of a FOPTD process for the step input test of Example 3.1.

Solution The static gain is k = y(eo)/d = 6.0/2.0 = 3.0. The time delay is # = 1.0 directly from
Figure 3.2. The time constant T =2.0 is obtained by drawing the tangent line at #=1.0 and
reading the point at which the tangent line and the y(7) = 6.0 line intersect. The same result is
obtained by reading the time at which the process output reaches 0.6321y(e). So, the FOPTD
model obtained is G(s) = 3.0 exp(—1.0s)/(2.0s + 1).

Note that this kind of process identification is only applicable to the FOPTD process. More
general approaches will be introduced later.

82 Process Identification and PID Control

3.1.2 Second-Order Plus Time-Delay Processes
The SOPTD process is

_y(s) kexp(—0s)
C6) =)~ At +1 (37)

where k, 7, £ and 6 are called the static gain, the time constant, the damping factor and the time
delay respectively. The step input response can be obtained by solving the differential
equation (3.7) for the initial conditions (3.8):

u(t)y=d fort>0 and u(t)=0 fort<0, y(t)=0 fort<0 (3.8)

For ¢ > 1 (overdamped process)

W(0) :kd{l— rlexp[—(t—O)/rl]—rzexp[—(t—O)/rz]} fort > (3.9)
y(t)=0 forz<6 (3.10)

For £ =1 (critically damped process)
y(t) = kd{1 —[1+4 (t—0)/t]exp] — (t—0)/1]} (3.11)
y(t)=0 forz<6 (3.12)

For £ <1 (underdamped process)

/ 2 / 2
y(l)=kd<1—exp[—f(t—ﬂ)/f]{COSl 1;5 (t—0)| + _____.f_gzsin[lr_f (z—o)”
(3.13)
y(t)=0 forr<6 (3.14)

where

T T
R GRS

Note that d?y(r)/d¢* is affected directly by the process input. But dy(r)/ds is affected
indirectly, because it is a result of the integral of dzy(l)/dtz. So, the first derivative dy(z)/d¢
has no discontinuity at = 6. The second derivative has a discontinuity at = 6.

As shown in Figure 3.3, there are the three types of step response for the SOPTD process.
One is the overdamped process, which shows no oscillation and the roots of the denominator
%% + 21és5 + 1=0 are distinct and real (equivalently, £ > 1). Another is the critically
damped process, which shows no oscillation and the denominator t%s* + 2tés + 1 =0 has

11

Dynamic Behavior of Linear Processes 83

1.6

1.4}

1.2}

1t

0.8f

¥

0.6

0.4}

0.2}

0

0.8} 1

0.6} =)

u(t)

0.4}]

t

Figure 3.3 Responses of a SOPTD process with respect to the damping factor.

the real double root (equivalently, £ = 1). The other is the underdamped process, which shows
oscillation and the roots of the denominator t°s* + 2tés + 1 =0 are distinct and complex
(equivalently, £<1).

In particular, consider the underdamped response in Figure 3.4. The following terms to
characterize the underdamped response should be kept in mind, because they have been widely
used to characterize the control performance of the closed-loop control system.

fp1 and 7y, are the first peak time and the second peak time. The settling time £, is the time
required for the process output to reach within 5% of the final value. The overshoot and the
decay ratio are defined as (yp; — y(0))/y(e0) and (yp2 — y(=0))/(y,1 — ¥(=2)) respectively.

Obtain the following equations from (3.13):

ty=0+nt/\/1-& =0+P/2 time to first peak (3.15)

84 Process Identification and PID Control

1.6

1.4

\ S e—
| <2
§ 0.8+
1.05)(c) | [0.95y(c0)
06| [T
Yp1 Y(e) Yp2
0.4+
P
0.2+ t -
O 1 1 1)
0 ty 5 10ty 15 20

Figure 3.4 Underdamped response.

P= \/% period (3.16)
yply_(oz)(w) = exp <\/:f—§§2> overshoot (3.17)

)’pz—y(°°)_ Jo1 (=) 2—ex ﬂ ecay ratio
ypl—y(w)< y(°)) p(ﬂ) decay rat (3.18)

Example 3.2
Figure 3.5 shows the step response (top) for a process receiving a step input (bottom) from 0 to 1
at =0. Obtain the SOPTD model.

Solution The static gain is k =y(e0)/d=1.0/1.0=1.0. The time delay is 6 = 1.0 directly
from Figure 3.5. And the first peak is y,; =1.37 and the period P =9.8 from Figure 3.5.
Then, £=0.3 and t = 1.5 are obtained from (y,; — y(s))/y() = exp| — n&/(1 — &*)*] and
P=2nt/(1—¢)°°. So, the SOPTD model obtained is G(s)=1.0 exp(—1.0s)/
(1.5%% + 2.0 x 1.5 x 0.35 + 1).

3.2 Process Reaction Curve Method

The process reaction curve (PRC) method is used to obtain the FOPTD model from the step
input test. The procedure is as follows. First, a step input u.. enters until the process output
reaches a steady state y.., as shown in Figure 3.6. Note that most processes in industry show step

Dynamic Behavior of Linear Processes 85

1.4
1.3
1.2
1.1
;
0.9
0.8
g o7
0.6
0.5
0.4
0.3
0.2
0.1
0

Il Il Il Il Il Il Il
012345678 9101112131415161718192021222324252627 2829 30

u(t)

Il Il Il Il Il Il Il Il
0123456 78 91011121314151617181920212223242526272829 30

t

Figure 3.5 Step response of a SOPTD process for the step test of Example 3.2.

responses like Figure 3.6 rather than those of Figure 3.2 because they are not the FOPTD
(process orders are higher than unity in most cases).

Second, draw the tangent line at the inflection point. Third, determine the time delay 6 and
the time constant 7, as shown in Figure 3.6. Fourth, the static gain can be estimated by the ratio
of the process output to the step input; that is, kK =y../u... The PRC method can be easily
understood by comparing Figures 3.6 and 3.1. The method is very simple and provides the exact

86 Process Identification and PID Control

2 —=
’d‘d'--)\
/l/’ y
1.5} Tangent ,/ --------- step process input ~
line A |- process output
,I
'I

Ll STTTTTTTrr Ty S feescelrunucmnncacasannunanacasnannaacassnnnasnasansnmmanacannshaaacans

4

7

!
4
I'
0.5¢ 4 U,
)
—>
T 5
4
O 7’ 1 Il J
0 5 10 15
time

Figure 3.6 Typical step response of the usual open-loop stable and overdamped processes.

model for the FOPTD process. However, it also suffers from several practical problems. The
FOPTD model has limitations in approximating underdamped/high-order processes. Also, it is
difficult to determine the inflection point if the measurements are contaminated by measure-
ment noise. Moreover, the method requires a long identification time and the model obtained
can be sensitive to disturbances and/or noises because it opens the control loop until the system
reaches the steady state.

Example 3.3
Figure 3.7 shows the step response (top) for a process receiving a step input (bottom) from O to 1
at at t=0. Obtain the FOPTD model using the PRC method.

Solution The static gain is k = y(c0)/d =1.0/1.0 = 1.0. The time delay 6 = 1.0 and the time
constant T = 4.0 are obtained by drawing the tangent line at the inflection point and reading the
point at which the tangent line and the y(7) = 1.0 line intersect. So, the FOPTD model obtained
is G(s) = 1.0exp(—1.0s)/(4.0s + 1).

3.3 Poles and Zeroes

Poles are finite s values that make the transfer function infinite. Zeroes are finite s values that
make the transfer function zero. For example, the transfer function (1.162) has a pole of —1 and
azero of —1/3. Roughly speaking, poles make the denominator of the transfer function zero and
zeroes make the numerator of the transfer function zero. The dynamic characteristics can be
understood by investigating the poles and the zeroes as follows.

3.3.1 Relationship Between Poles and Dynamic Behaviors

Consider the following examples to see how the dynamic characteristics are connected with
poles. The results of the examples will be summarized to derive extremely important conclu-
sions on the stability.

87

Dynamic Behavior of Linear Processes

=

- —— 4 ——

i et S e

]

]

1
0.8F—-

06F——F——F——d— o ——

04F——b——db b

02f—-
0

12 13 14 15

11

Figure 3.7 Step response of a process for the step test.

Example 3.4

The process has real positive poles.

(3.19)

The process in (3.19) has poles of 1 and 2. Equation (3.19) can be rewritten for the step input

signal u(s) = 1/s:

(3.20)

p(21)

—€X

p(?) +

88 Process Identification and PID Control

As shown in Example 3.4, the process output y(7) diverges exponentially as ¢ increases
because it is a linear combination of the monotonically increasing exponential functions exp(?)
and exp(2?), originated from the positive poles.

Example 3.5
The process has real negative poles.

y(s) 1
W) " GG G20

The process (3.21) has poles of —1 and —2. Equation (3.21) can be rewritten for the step input
signal u(s)=1/s:

P S S V- S S V.3

1 1
= 1) == —exp(—1)+ ~exp(—2¢
(s+1)(s+2)s s s+1 s+2’ ¥(0) exp(=)+ Zexp()

2
(3.22)

As shown in Example 3.5, the process output y(#) converges exponentially to the steady-state
value of 1/2 as t increases because it is a linear combination of the monotonically decreasing
exponential functions exp(—¢) and exp(—2¢), originated from the negative poles.

Example 3.6
The process has complex poles of which the real parts are negative.
y(s) 2 2

us) 212512 P (14— (=1-D)] (3.23)

The process (3.23) has complex poles of —1 =+ i. Equation (3.23) can be rewritten for the step
input signal u(s) = 1/s:
2 1 (1-1)/2 (14+1)/2

YO = T TS (S s a— (=141 s—(—i—py O

- 1 +i
y()=1- TIGXP(—Z-HI)— %exp(—t—it)

_exp(— 1)
2

(3.25)
=1 [(1—=1)exp(if) + (1 +1)exp(—1i?)]
Equation (3.25) can be rewritten using the Euler formula exp(ix) = cos(x) -+ 1i sin(x):

y(t) =1 —exp(—1)(cos t+sin) (3.26)

As shown in Example 3.6, the magnitude of the process output y(z) converges exponentially
to the steady-state value of 1 as ¢ increases because the magnitude is determined by the
monotonically decreasing exponential function exp(—¢), originated from the real part of the
pole. Also, y(?) oscillates with a period of 21 because of the two functions exp(i?) and exp(—i?),
originated from the imaginary part of the pole.

Dynamic Behavior of Linear Processes 89

Example 3.7
The process has complex poles of which the real parts are positive.
() 2 2

u) 2542 (D) =(1=1] (3.27)

The process (3.27) has complex poles of 1 4-1i. Equation (3.27) can be rewritten for the step
input signal u(s) = 1/s:
y(s) 2 1 (1—-1)/2 (141)/2

@:S[S*(l+i)}[s—(l —1i)] s s—(1+1) s—(1—-1) (3.28)

1—i 1+i exp(?)

y(#)=1- 5 exp(t+it) — exp(t—it)=1- 5

(1 —1i)exp(it) + (1 +1i)exp(—it)]
(3.29)

Equation (3.29) can be rewritten using the Euler formula exp(ix) = cos(x) -+ 1i sin(x):
y() = 1 —exp(#)(cos t +sin) (3.30)

As shown in Example 3.7, the magnitude of the process output y(¢) diverges exponentially as
t increases because the magnitude is determined by the monotonically increasing exponential
function exp(?), originated from the real part of the pole. Also, y(¢) oscillates with a period of 21
because of the two functions exp(if) and exp(—it), originated from the imaginary part of
the pole.

Example 3.8
Consider the following strictly proper system in which the poles are different from each other.
Strictly proper means that the order of the numerator is less than that of the denominator.

Cals—z)(s—z) - (S —zZm) o
o) = (s—p1)(s—p2)--(s—pn)’ > (3.31)

where p,. and z,, are the poles and zeroes of the system and « is an arbitrary constant. The poles
and the zeroes are real or complex numbers. Equation (3.31) for a step input can be rewritten
equivalently by partial fractions as follows:
A A A A,
0 1 2 L

y(s) ==+ + et
s s=pi S—p S = Dn

(3.32)

Then, y(7) =Ag + A exp(pit) + Arexp(pat) + -+ - + A, exp(p,?) is obtained. That is, y()
is a linear combination of exp(pi?), k=1,2,...,n, originated from the poles. By the Euler
formula:

exp(pxt) = exp(Re(px)t +1iIm(py)t) = exp(Re(pi))[cos(Im(py)t) + i sin(Im(p) ?)]

Re(ps) and Im(p;) are the real part and the imaginary part respectively. Note that exp(Re-
(pi)t) determines the magnitude. So, if one pole has a positive real part, then the system is

90 Process Identification and PID Control

unstable. If all the poles have negative real parts then all the terms are exponentially
converging functions, so that the system is stable for a step input.

The same conclusion can be reached for the case that some of the poles are the same, like
double root, triple root and so on. If the process is rewritten with partial fractions for the case
that it has a double root of py, then it will contain 7 exp(p,?) additionally. So, the stability is still
determined by the real part of the pole.

Also, the system is unstable for a step input if one of the poles is located on zero because the
partial fraction form of y(s) contains 1/s%, which is an unstable ramp function.

In summary, the following statements can be concluded by generalizing the results of
Examples 3.4-3.8.

1. If all the poles are real, then the process output will not oscillate for a step input signal.

2. If one of the poles is complex, then the process output will oscillate for a step input signal.

3. If one of the poles has a positive real part the process output will diverge (unstable) for a step
input signal.

4. If the poles have negative real parts the process output will not diverge (stable) for a step
input signal.

5. If one of the poles is located on zero, the process output will diverge for a step input signal.

3.3.2 Stable Poles, Unstable Poles, Left-Half-Plane Pole,
Right-Half-Plane Pole

The pole is called a right-half-plane (RHP) pole (or unstable pole) if the real part of the pole is
positive. Similarly, if the real part of the pole is negative, then it is called a left-half-plane (LHP)
pole (or stable pole). When locating on the pole in Figure 3.8, it can be understood why they are
termed thus.

Here, Re(p) and Im(p) denote the real part and the imaginary part of the pole. The LHP means
the left part of the y-axis in Figure 3.8. The —1.5 4 1.0i and —1.5 — 1.0i poles belong to the
LHP. The 1.5 + 1.0i and 1.5 — 1.0i poles belong to the RHP. Because the RHP pole has a
positive real part, it is called the unstable pole. The LHP pole has a negative real part. Thus, itis
called the stable pole.

Im(p)
—1.5+1.0i 1.5+1.0i
[] []
0+0i >
Re(p)
[] [J
—1.5-1.0i 1.5-1.0i

Figure 3.8 Pole positions.

Dynamic Behavior of Linear Processes 91

3.3.3 Open-Loop Stable and Unstable Processes

If the process output is stable and converges to a constant value for a step process input, then it
is called an open-loop stable process. Otherwise, it is called an open-loop unstable process. If the
process has a transfer function in which the poles are located on zero, then itis called an integrating
process. And the process is called an unstable process if it has a transfer function in which some of
the poles have positive real parts. For example, G(s) =exp(—0.1s)/[s(s + 1)] and G(s) =exp
(—0.1s)/[s3(s + 1)(s + 0.1)] are integrating processes and G(s)=exp(—0.1s)/[(s + 1)
(10s—D]and G(s) =exp(—0.25)/[(s — 0.1 4+ 0.017)(s — 0.1 — 0.017)] are unstable processes.
The integrating process and the unstable process are open-loop unstable processes.

3.3.4 Relationship Between Zeroes and Dynamic Behaviors

Zeroes determine the initial dynamics of the process output for an abrupt change of process
input. Attention needs paying to the fact that the numerator of the transfer function corresponds
to the differentials of the process input. If there is an abrupt change in the process input, then the
differential terms in the numerator become large. Meanwhile, the differential terms are
negligible for a smooth process input. Consider the following examples.

Example 3.9
Case 1 has the large zero of 10, Case 2 has a small positive zero of 0.1 and Case 3 has a small
negative zero of —0.1.

y(s) —0.1s+1

Casel: —F=—-7-—7-— 3.33
B 5 R Py 333)
Case2: 208 _ —10s+1 (3.34)
Cou(s) 2425+ 1 '
y(s) 10s+1
Case3: —F=——-— 3.35
e u(s) s24+2s+1 (3.33)

The numerators of the three cases correspond to the differentials —0.1du(#)/dt + u(?),
—10du(r)/dt + u(t) and 10du()/dt + u(?) respectively. Assume that the process input u(r)
changes from zero to a positive value abruptly. Then, du(z)/d¢ will be a large positive value at the
instant of the abrupt change and du(7)/dt will go back to zero after the instant. Consider the
simulation in Figure 3.9. The process input u(t) is a step signal (u(z) =1 for t > 0, u(¢) =0 for
t<0).

Note that —0.1du(#)/dt + u(¢), —10du(?)/dt + u(t) and 10du(#)/d¢ + u(z) of the three cases
are the same for # > 0 because du(z)/dt =0at ¢ > 0. So, although the initial responses are totally
different from each other, the late parts of the three step-responses converge on each other. The
positive value of 10du(?)/d¢ at t=0 in Case 3 is much bigger than —0.1du(¢)/d¢ at =0 in
Case 1, so that the process output of Case 3 deviates positively from the process output of Case 1.
The big negative value of —10 du(#)/dz at = 0 in Case 2 drags the process output down initially.
In Case 2, the initial direction of the process output is opposite to the direction of the late part.
This is called the inverse response.

92 Process Identification and PID Control

1.2

Figure 3.9 Step responses of Case 1, Case 2 and Case 3.

In summary, a small positive zero produces an inverse response or drag down of the process
output initially for a positive step input. A small negative zero initially drags up the process
output for a positive step input.

3.4 Block Diagram

A block diagram is a useful tool to show signal flows in a systematic way between the transfer
functions (blocks). Consider the following examples to understand the relationships between
the block diagram and the transfer functions and several important properties of the block
diagram.

Example 3.10
The following block diagram is equivalent to Equations (3.36)—(3.38):

vi(s) 4 20 u(s) exp(—0.2s) y(s) -
CT_ : (1) "

The input and the output of the first transfer function (block) are y(s) — y(s) and u(s)
respectively. The transfer function of the first block is 2.0; that is, u(s)/ys(s) — y(s) = 2. So:

u(s) = 2.0(ys(s) = y(s)) & u(t) = 2.0(y:(1) = ¥(1)) (3.36)

In a similar way, u(s) and y(s) are the input and the output of the second transfer function (that
is, y(s)/u(s) = exp(—0.25)/(s + 1) respectively. Then, (3.37) is derived:

sy(s) +y(s) = u(s)exp(—0.25) & d)jd—(;) +y(t) =u(t—0.2) (3.37)

Dynamic Behavior of Linear Processes 93

From (3.36) and (3.37):

(1)

$9(5) + () = 2.000(5) = ¥(s)Jexp(— 0.25) 5 =

+y(1) =2.0(ys(t —0.2) —y(t — 0.2))
(3.38)
Meanwhile, the transfer function from y,(s) to y(s) can be derived in a straightforward way.

By multiplying y(s)/u(s) = exp(—0.25)/(s + 1) and u(s)/(ys(s) — y(s)) = 2 the transfer function
from y,(s) — y(s) to y(s) is obtained as follows:

y(s) _2 exp(—0.2s)
ys(s) = y(s) s+1

(3.39)

Equation (3.39) can be rewritten to the following transfer function from y,(s) to y(s).

y(s) _ 2exp(—0.2s)/(s+1)
ys(8) 1+2exp(—0.2s)/(s+1)

(3.40)

Example 3.11
Obtain the overall transfer function from u(s) to y(s) for the following block diagram, in which
several transfer functions are connected sequentially.

u(s) v

. v ¥(5)

G,(s) » G, (s)

Solution From the block diagram, v{(s)/u(s) = G (s), v2(8)/vi(s) = Ga(s) and y(s)/v,(s) =
G3(s). Then, it is straightforward to obtain y(s)/u(s) = G(s)G2(s)G3(s) by multiplying the three
terms.

Example 3.12
Obtain the overall transfer function from u;(s) and u,(s) to y(s) for the following block diagram,
in which the outputs of the two blocks are added, followed by the two transfer functions:

+)
u,(s) G.(s) v, (s) C v(s) G.(s) G.(s) y(s)

AN ey EX0)

Solution From the block diagram, v;(s)/u;(s) = G(5), va(s)/ux(s) = Ga(s), vi(s) — va(s) =
v(s) and y(s)/v(s) = G3(5)G4(s). That is, vi(s) =G (S)ui(s), vo(s) = Go(s)ux(s) and y(s)=
G3(5)G4(s)(v1(s) — va(s)). Then, it is straightforward to obtain (Gi(S)ui(s) — Ga(s)ua(s))
G3(5)Ga(s) = y(5).

A\ 4

94 Process Identification and PID Control

Example 3.13
Obtain the transfer functions from d(s) to y(s), from yy(s) to y(s) and from d(s) and yy(s) to y(s)
for the following block diagram:

d(s) —» Gy(s) _l
+ ~F

Yol g Gus) PO G,(5)

¥(s)

v

G (s) —

Solution Let us assume y (s) =0 to obtain the transfer function from d(s) to y(s). Then,
(—=y(G(s) + d(5)Ga(s) — ¥($)Gi(5))Gy(s) = y(s) can be obtained in a straightforward manner
by considering Examples 3.11 and 3.12. This can be rewritten as follows:

2s) _ Gy(5)Gal(s)
d(s) 1+ Gy(s)Gi(s) + Gp(5)Ge(s) (3.41)

~

Let us assume d(s) = 0 to obtain the transfer function from y,(s) to y(s). Then, ((ys(s) — y(s))
G(s) — ¥(5)Gi(5))Gp(s) = y(s) is obtained in a straightforward manner. That is:

W) Gs)Guls)
¥s(8) 14 Gp(8)Gi(s) + Gp(s)Ge(s)

(3.42)

Using the superposition rule, the transfer function from d(s) and y,(s) to y(s) is obtained by
adding the two transfer functions (3.41) and (3.42):

Gp(s)Gal(s)

) Gul5)Gels)
14 G, (5)Gi(s) + Gp(s)Ge(s)

14 Gp(S)Gi (S) + GP(S)GC(S) ys(S)

y(s) d(s) + (3.43)

3.5 Frequency Responses

The frequency responses have been widely used in the research area of process control and
process identification. Estimating the frequency responses of the process from the process data
is one of the most important things in process identification. Also, analyzing techniques on the
basis of the frequency responses have played an important role in designing process controllers
and analyzing the stability of the closed-loop control system. In this section, the frequency
response is defined and the relationship between the frequency response and the transfer
function is discussed. The ultimate frequency and the ultimate gain are then defined, which
are extremely important for proportional-integral-derivative (PID) controller tuning. Finally,
the Bode plot and the Nyquist plot for graphic representations of the frequency responses are
introduced.

Dynamic Behavior of Linear Processes 95

3.5.1 Frequency Responses of Linear Processes

Consider the following important fact. When you enter a sine signal input #(¢) = a sin(w?) into a
linear process for a long time, the process output always becomes a sine signal of the same
frequency, like y(¢) = bsin(w? + ¢), as shown in Figure 3.10. In this case, the ratio of the
amplitude of the process output to that of the process input (i.e. b/a) is called the amplitude ratio

u)| 2 o | Z | (o)

D

v

a
Process
\V/ VAR .
i 3 !

Figure 3.10 Typical response of a process output for a sine signal.

aAR(w
/A
wt

of the process (denoted by AR(w)) and the phase difference ¢ between the process output
and the process input is called the phase angle of the process (denoted by ¢(w)). In other words,
the process output is y(f) = aAR(w) sin(w? + ¢ (w)) for the process input u(?) = a sin(wt) in
cyclic-steady-state. The set of the amplitude ratio AR(w) and the phase angle ¢(w) is called
the frequency response of the process. The frequency response is a function of the frequency w.

Usually, the process output is lagged backward so that ¢(w) is negative. Also, the magnitude
of the phase angle I¢p(w)| becomes bigger and the amplitude ratio becomes smaller monotoni-
cally as the frequency of the sine input signal increases.

Example 3.14

Assume that you use a sine signal to activate the process. After entering the process input
u(t) = 5.2 sin(0.5¢7) for along time, you find the process output y(¢) = 1.3 sin(0.5¢ — 1/6). In this
case, the amplitude ratio AR(w) is 0.25 and the phase angle ¢(w) is —m/6 at a frequency of 0.5.

Example 3.15

Assume that you perform two experiments using two different sine signals. In the first
experiment, you find the process output y(¢) = 1.5sin(0.5¢ — 1/10) after entering the process
input u(f) =3.0sin(0.5¢7) for a long time. Next, you perform the other experiment with
u(t) =6.0sin(1.0¢) and find y(¢) = 1.5 sin(1.0z — ©/4). In this case, two frequency responses of
the process are obtained: AR(0.5)=0.5, ¢(0.5) = —n/10 and AR(1.0) =0.25, ¢(1.0) = —m/4.

3.5.2 Estimating Frequency Responses from the Transfer Function

The frequency response of the process can be obtained directly from the transfer function without
simulation or plant test. Assume that G(s) of the transfer function of the process is available.
Then, the amplitude ratio and the phase angle can be estimated by the following equations.

AR(w) = |G(iw)| = \/Re(G(iw))2 +1Im(G(iw))* (3.44)
¢(w) = /G(iw) = arctan for Re(G(iw)) and Im(G(iw)) (3.45)

96 Process Identification and PID Control

Equations (3.44) and (3.45) are equivalent to the complex number (3.46) because exp(i / G-
(iw)) = cos(/G(iw)) + isin(/G(iw)).

Gliw) = |G(iw)|exp(i/G(iw)) (3.46)

Now, G(iw) can be calculated from (3.46) if the amplitude ratio and the phase angle are
given.

Proof
Assume G(s) is stable and a strictly proper transfer function and the structure of the transfer
function is
k(s — Y — U ~ “m
G(s) = (s—z)(s—2) - (s—z)’ n>m (3.47)
(s=pi)(s—p2)---(s=pn)

where all poles are distinct. For the process input u(#) = a sin(w¢?), of which the Laplace trans-
form is u(s) = aw/(s* + w?), the process output will be

_ awG(s) _ kaw(s —z1)(s —z2) - (s — z)
y(s) = (s —iw)(s +iw) o (s—p)(s—p2) - (s —pu)(s — i) (s + i) (3.43)

Then, (3.49) is obtained by the partial fraction

A A A aG(iw) 1 aG(—iw) 1
o= Ay A2y A aGliw) 4 46 iw)

3.49
S—p1 S—p S — Dn 21 s—iw —-2i s+iw ()

where Ay is a constant. So, the process output in the time domain is

aG(—iw)
2i

G(i .
y(t) = Ayexp(pit) + --- + A, exp(pat) + a éiw) exp(iwt) —

exp(—iwt) (3.50)

Note that G(s) is stable, so the real parts of all the poles except iw and —iw are negative. Then,
all the terms except exp(—iwf) and exp(iwt) will decay to zero after a long time. As a result, the
final process output is

y(t) = “Gz(ii“’) exp(iwt) — @exp(— iwf) (3.51)

Note that G(iw) =Re(G(iw)) 4+ iIm(G(iw)) means G(—iw)=Re(G(iw)) —iIm(G(iw)),
resulting in IG(iw)l = |G(—iw)l and /G(iw) = —/G(—iw). From the three equations G(iw) =
IG(iw)lexp(i/G(iw))a, /G(iw) = —/G(—iw) and IG(iw)l = I1G(—iw)l, (3.52) is obtained.

_ 4lG(iw)|
N

explior+i/G(i0)) — 28U ool ot — i/G(iw) (3.52)

y(?) o

This can be rewritten as (3.53) by using the Euler formula sin(x) = (exp(ix) — exp(—ix))/(2i):
y(#) = a|G(iw)|sin(w? + /G(iw)) (3.53)

Dynamic Behavior of Linear Processes 97

Equation (3.53) proves (3.44) and (3.45). That is, if the process is strictly proper and stable
then the process output becomes y(?) = alG(iw)lsin(wt + /G(iw)) for the process input
u(t) = a sin(w?). This means that the amplitude ratio is IG(iw)| and the phase angle is /G(iw).
The proof can easily be extended to the case that some poles are multiple roots.

Note that the frequency response for the zero frequency (@ = 0) is G(0) from G(iw). And, note
that G(0) is the static gain (thatis, G(0) = y/u) for the open-loop stable process because setting
s = 0 means steady state (that is, all the derivatives are zero). For example, G(0) is k = y,/u, for
the FOPTD process of G(s) =kexp(—60s)/(ts + 1). So, the frequency response for the zero
frequency is the same as the static gain for the open-loop stable process.

Example 3.16
Assume that G(s) = G1(5)G»(8)- - -G,,(s) and G (iw), k= 1,2, . . ., n, are given. Then, |G(iw)l and
/G(iw) can be easily obtained from the following equations:

G(i0)| = |G (i0)[|Ga(iw)] - - - |Gy (iw)] (3.54)

/G(iw) = /G (i) + /Gy (i) + - - + /G, (iw) (3.55)

This can be derived directly by using the representation Gy(iw) =G (iw)l exp(i/G(iw)).

Example 3.17

Predict the process output in the case that you enter the process input u(f) = 2.0 sin(1.0¢7) into
the linear time-invariant process of which the transfer function is G(s) =exp(—0.1s)/
(s + 2)°

Solution Because IG(i1.0)l=0.2 and /G(i1.0) = —1.027, y(¢#) = 0.4 sin(1.0t —1.027).

Example 3.18
Predict the process output in the case that you enter the process input u(¢) =2.0sin(1.0¢) +
3sin(1.5¢) into the process of which the transfer function is G(s) = exp(—0.1s)/(s + 2)2.

Solution Because IG(i1.0)l=0.2 and /G(i1.0) =—1.027, y(¢#)=0.4sin(1.0¢ — 1.027) for
u(t)=2.0sin(1.07). And y(¥) =0.48sin(1.5¢ — 1.437) for u(r)=3.0sin(1.5¢) because
IG(11.5)I=0.16 and /G(il.5) = —1.437. By the superposition rule, the solution is y(#) =0.4
sin(1.0¢1 — 1.027) + 0.48 sin(1.5¢ — 1.437) for u(t) =2.0sin(1.07) + 3 sin(1.57).

Example 3.19
You obtained y(¢)=0.3sin(0.5¢ — n/8) for u(#)=1.0sin(0.5¢) from an experiment. Find
G(0.51) for the process.

Solution The amplitude ratio AR(0.5)=G(0.51))=0.3 and the phase angle ¢(0.5)=
/G(0.51) = —n/8 are obtained from the experiment. So, the solution is G(0.51) =1G(0.51)!
exp(i/G(0.51)) = 0.3 exp(—in/8) = 0.277 —i0.115.

98 Process Identification and PID Control

Example 3.20

You obtained y(¢) = 0.8 sin(0.5¢ — n/8) + 0.5 sin(1.0z — w/4) + 0.1 sin(3.0¢ — 3w/4) + 1.0 for
u(t) =sin(0.5¢) + sin(1.07) + sin(3.07) + 1.0 from an experiment. Find G(0.51), G(1.0i), G
(3.01) and G(0.0) for the process.

Solution By the superposition rule, the process would show y(z) = 0.8 sin(0.5¢ — ©/8) for
u(t) =sin(0.5¢), y(t) =0.5sin(1.0t — n/4) for u(¢) =sin(1.07), y(¢¥) =0.1sin(3.0¢ — 37/4) for
u(t) =sin(3.07) and y(#) = 1.0 for u(r) = 1.0. So, G(0.51) = 0.8 exp(—in/8), G(1.0i) = 0.5 exp
(—in/4), G(3.0i) =0.1 exp(—i3n/4) and G(0.0)=1.0/1.0.

3.5.3 Ultimate Gain (Ratio) and Ultimate Frequency

Assume that you enter a sine signal asin(w?) into a process for a long time and then the
process output becomes a sine signal of the same frequency w. In this case, if the process output
is lagged by —m (that is, y(#) = b sin(wt —) = —b sin(wt) for u(t) = sin(wt), and equivalently
/G(iw) = —m) for the frequency w, as shown in Figure 3.11, then the frequency is the ultimate
frequency w,. Also, the ultimate gain is k., = a/b, which is the reciprocal of the amplitude ratio
(kew=1/AR(w,) or k¢, = 1/IG(iwy)!) for the ultimate frequency.

up| 2 /T\ ol . o aAR(ay)
a —»
»| Process AN >
\/ oyt 3 oyt
1 3 1

Figure 3.11 Response of a process output for a sine signal of ultimate frequency w,.

Example 3.21

After performing many experiments changing the frequency, you find that the process output
is y(f) = —1.3sin(2.2¢) for the process input u(t) =2.6sin(2.2¢). Then, the ultimate fre-
quency, the ultimate period and the ultimate gain of the process are 2.2, 27/2.2 and 2.0
respectively.

Example 3.22

The ultimate frequency can be estimated directly by solving /G(iw,) = —7 (and equivalently
Im(G(iw,)) = 0) if the transfer function G(s) of the process is given. Then, it is straightforward
to estimate the ultimate gain k., = 1/IG(iw,)|. Find the ultimate frequency, the ultimate period,
the ultimate amplitude ratio and the ultimate gain for the process of which the transfer function
is G(s) = exp(—0.25)/(s + 2)*.

Solution The MATLAB code to estimate the ultimate frequency data using the bisection
method and the results are shown in Table 3.1. The bisection method estimates the ultimate
frequency by finding the root of Im(G(iw,)) = 0.

Dynamic Behavior of Linear Processes 99

3.5.4 Bode Plot and Nyquist Plot

A Bode plot is a set of two graphs of the amplitude ratio and the phase angle with respect to
frequency. A Nyquist plot is a graph in which the x-axis is the real part and the y-axis the
imaginary part of the frequency response G(iw).

Example 3.23
Let us draw the Bode plot and Nyquist plot for the following processes:

1 1 1
Gi(s) =507, Gal9) = B Gs(s) = ET (3.56)
Ga(s) = exp(—0.25), Gs(s) = 76Xp2(s101’23) (3.57)

From G,(iw) = 1/Qwi + 1) =(—2wi + /(4w? + 1)=1/(40> + 1) + i(—2w)/(4e> + 1)
we have Re(G(iw)) = 1/(4w”> + 1) and Im(G,(iw)) = (—2w)/(4w> + 1). Then, it is straight-
forward to draw the Nyquist plot by plotting Re(G,(iw)) versus Im(G,(iw)) with changing
frequency w, as shown in Figure 3.12. Here, PA denotes the phase angle.

Table 3.1 MATLAB code to estimate the ultimate frequency data using the bisection
method in Example 3.22.

uf_ex2.m g_uf_ex2.m
clear; function
w=0.0; delta_w=0.01; [gl=g_uf_ex2 (w)
g_L=imag (g_uf_ex2 (delta_w)); $imaginary parts=i*w;
while (1) % obtain the boundary for the g=exp (-0.2*%s)/ (s+2)"2;
bisection method end

w=w+delta_w;
g_R=imag (g_uf_ex2 (w));
if (g_R*g_L < 0) break; end

end command window

w_L=delta_w; w_R=w; $ boundary

while (1) % bisection method >>uf_ex2
w_M=(w_L+w_R)/2.0; wu=4.32841 Pu=1.45162
g_M=imag (g_uf_ex2 (w_M)); ARu = 0.04398 Ku =22.73511

g_R=imag (g_uf_ex2 (w_R));
if (g_M*g_R>0)
w_R=w_M;
else
w_L=w_M;
end
if (abs (w_R-w_1)<0.000000001) break; end
end
wu=w_M; ARu=abs (real (g_uf_ex2 (w_M)));
Pu=2*pi/wu; Ku=1l/ARu;
fprintf (wu=%7.5f Pu=%7.5f \n’,wu, Pu) ;
fprintf ("ARu=%7.5f Ku=%7.5f \n’,ARu,Ku) ;

100 Process Identification and PID Control

02,
0.1
° /
—0.1¢ PA of Gy(iw)
~ -0.2¢)
S Im(Gy(ie) |Gy (i)
E -03}
-0.4
A |
—0.5 Re(Gy(io)),Im(Gy(ie))
-0.6}
Re(Gy(i)
-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Re(Gy)

Figure 3.12 The Nyquist plot of G;(iw).

/Gy(iw)=tan '(Im/Re) = —tan 'Qw) and |G,(iw)| = I/ 20i+1| = 1/V4w? + 1.
Now, it is straightforward to draw the Bode plot, as shown in Figure 3.13. Here, the scales
of the x-axis and the y-axis of the amplitude ratio plot in the Bode plot are log;¢lG;(iw)l and
log o w. The scales of the x-axis and the y-axis of the phase-angle plot in the Bode plot are
/G(iw) and logo w.

Note that |Gi(iw)] = |I/(2wi+1)[|]1/2wi+ 1)||I/Q2wi+1)| = I/(V4w? + 1)3 and
/G5(iw) = 3/G,(iw) = —3 tan” ' (2w). Thus, the Nyquist plot and the Bode plot are as shown
in Figures 3.14 and 3.15.

(=]

5] 10" F 3
5
fe)
S
[0}
©
2
2
g L L L

1072 1071 100 101
© _oof]
[}
o 40t -
(@)
& -60f 1
3
@ -80f .
e
o 100 . . .

1072 107! 100 10!

[0}

Figure 3.13 The Bode plot of G(w).

Dynamic Behavior of Linear Processes 101

0.2

Im(G)

Figure 3.14 The Nyquist plot of G(iw), Go(iw) and G5(iw).

IG4(iw)l = lexp(—i0.2w)l = 1 and /G4(iw) = —0.2w are obtained for the fourth process. Also,
|Gs(iw)| = |exp(—i0.20)/|i20+ 1| = 1/V4w?> +1 and /Gs(iw)=—0.20 —tan”'Q2w)
for the fifth process. Thus, the Nyquist plot and the Bode plot are as shown in Figures 3.16
and 3.17.

100 -

Amplitude ratio

Phase angle

-300 " " "
1072 1071 100 10!
w

Figure 3.15 The Bode plot of G;(iw), G>(iw) and G3(iw).

102 Process Identification and PID Control

0.8}
0.6}
0.4}
0.2}

Im(G)
o

-0.2}
0.4}
—0.6}
-0.8+

Figure 3.16 The Nyquist plot of G4(iw) and Gs(iw).

Example 3.24

The ultimate frequency of G;(s) can be guessed from the Bode plot of Figure 3.15 by checking
the frequency corresponding to the phase angle of —180°. Then, it s straightforward to measure
the ultimate gain of Gs(s) by checking the amplitude ratio corresponding to the ultimate
frequency. The ultimate gain can also be measured from the Nyquist plot in a similar way. G(s)
and G,(s) have no ultimate frequency because they never cross the phase angle of —180°.

100 : . . -
'*é '..,.
g Gy(s) :
2 .
E b | Gs(s) S
€
=g .
102 L L L
1072 107" 100 10!
0 .
2 1001
]
o —200}
)]
2
£ —300}
—400 . . .
1072 107" 100 10?
w

Figure 3.17 The Bode plot of G4(iw) and Gs(iw).

Dynamic Behavior of Linear Processes

103

Example 3.25

Using a computer program, the plots can be drawn in a very simple way. Program the MATLAB
code to draw the Bode and Nyquist plots for Gs(s) =exp(—0.25)/(2s + 1).

Solution The MATLAB code to draw the Bode plot and the Nyquist plot of Gs(iw) is shown in
Table 3.2. Here, arctan 2(Im, Re) returns the phase angle of the complex number of Re + iIm.
It returns the phase angle ranged from —m and 4+ 7 while arctan(Im/Re) returns the phase angle

ranged from —m/2 and + 1/2.

Problems

3.1 Explain the following terms:

(a) time constant, time delay, static gain, FOPTD model,
(b) damping factor, underdamped process, overdamped process, overshoot, decay

ratio, settling time, SOPTD model,
(c) step input response, PRC method;
(d) poles, zeroes, transfer function, inverse response;

(e) block diagram, amplitude ratio, phase angle, frequency response;
(f) ultimate gain, ultimate frequency, ultimate amplitude ratio;

(g) Bode plot, Nyquist plot.

Table 3.2 MATLAB code to draw the Bode plot and the Nyquist plot of Gs(iw).

bode_nyquist_ex3.m

clear;

w_max=10.0; delw=0.01;

dummy_pab=0.0; pa_base=0.0;

n=round (w_max/delw) ;

s=0*i; m=1;

G=g_bn_ex3(s); R(m)=real (G); I (m)=imag(G) ;
W (m)=0; AR (m)=abs (G) ;

form=2:n

g_bn_ex3.m

function
[g]l=g_bn_ex3(s)

g=exp (-0.2*%s)/ (s+2)"2;
end

s=i*m*delw;
G=g_bn_ex3(s);
W(m)=m*delw; R(m)=real (G); I (m)=1imag(G)
1f(I(m)>0.0& I(m-1)<0.0) pa_base=pa_base-
2*pi; end
pa=pa_base+atan2 (I(m),R(m));
PA (m) =pa*180/pi; AR (m)=abs (G) ;
end
figure (1) ; subplot(2,1,1); loglog (W, AR); %$Bode
subplot(2,1,2); semilogx (W, PA) ;
figure (2); plot(R,I); $Nyquist

command window

>> bode_nyquist_ex3

104

Process Identification and PID Control

32
33
34
3.5

3.6

3.7

3.8

o
T
|
L
I
-
I
-l
|
I
—
I
—t————F—t
I

O =t —t—-]

Y
o -+
o -+

—_
o
-
-

1213141516 17 18 19 20

~

u(t)

-
T
|
|
|
T T TT T T T

05F-}-

Y B TR R
Y E TR R
—]
1]
I I IV R
I I IV R

QE=——==— T~~~ T————~7T"
2% ESSEEEES S S
O F—————f—————t—————f——
e e e e fa
oF—————f—————————— 1 ——
op—-—————++—————+————-—-q1—--

o
-
NEF—————

10111213 141516 17 18 19 20
t

Figure P3.1

Estimate the FOPTD model for the step response shown in Figure P3.1.

Estimate the SOPTD model for the step response shown in Figure P3.2.

Run the real-time virtual processes (refer to Appendix for details) and choose Process 1
and code the step test using a MATLAB m-file and perform the step input test to Process 1.
Now estimate the FOPTD model to fit the step response of Process 1.

Perform the step input test to the virtual process Process 2 (refer to Appendix for details)
and estimate the SOPTD model to fit the dynamics of Process 2.

Perform the step input test to the virtual process of Process 3 (refer to Appendix for
details) and estimate the FOPTD model for Process 3. Note that the process output and the
process input are not zero initially. So, you need to define new deviation variables for the
process input and output.

Solve Problem 3.6 again with Process 4 (refer to Appendix for details) and the SOPTD
model.

Find the poles and the zeroes for the following processes:

&_ s—0.5
@ e T G612
b) &: s+0.5

u(s) (2+s+1)(s+1)

105

Dynamic Behavior of Linear Processes

12 13 14 15

7 8 9 10 M1

6

|

|

|

|

|

|
b —— o —— - —]

s e S e e e S

|

|

|

|

|
1F———+——+—-

05F—4-——4——L—

@n

Figure P3.2

3.9 Find all the processes that show unstable response, stable response, oscillatory response,

nonoscillatory response and inverse response respectively for a step process input among

the following processes:

—
<t
+
=sle
==
T+
2| =
—~| =
=
AR
T+
N
==
| —
+
%)
N
~~
<
N

_exp(—0.1s)
524055+ 1

\/
he] —~
i —
© +
(- ©
NN
N
ot +|=
wSSI
~| 1 S|+
f— —
Q ©
+=
e
% g
(=] “
= =2
Sssi
° <
N N

S5s+1
s(23—|— 1)(3s+1)

—5s+1
s3(2s+ (3s+1)

;

106 Process Identification and PID Control

d

2 e —l ‘T
s ns)
y_(s)» Gi(9) —io_—» G(9) ULt Goi(9) [Ot—» Gpo(s) >

Gm(s)

Figure P3.3

y(s) exp(—0.3s)
® u(s) (s+1)(s+2)(s—1)

3.10 Consider the block diagram in Figure P3.3.

(a) Find the transfer function from y4(s) to y(s).

(b) Find the transfer function from d,(s) to y(s).

(¢) Find the transfer function from d,(s) to y(s).

(d) Find the relationship between y,(s), d,(s), d»(s) and y(s) using the above-obtained
transfer functions.

3.11 You obtain the process output y(¢) = 0.5 sin(2¢z — ©/2) for the process input u(#) =2 sin
(2¢) for a given process. Find the process outputs of the given process for the following
process inputs:

(@) u(t) = 4sin(21)
(b) u(r) = 2sin(2t — m/4)
(c) u(t) =sin(2t+m/2).

3.12 You perform two sine input experiments. In the first experiment, y(¢) = 0.25 sin(2¢ — 3n/4)
is obtained for u(?) = sin(2¢). Then y(#) = 0.5 sin(¢ — 1/4) for u(¢) =sin(?) is obtained in the
second experiment. Find G(1i) and G(2i). Here, G(s) is the transfer function of the process.

3.13 You perform a step input test and a sine input test. y(#) = 2 is obtained for u(7) = 1 from the
step test and y(7) = 0.7 sin(3¢) for u(?) = sin(3¢ + 1/6) is obtained from the sine test. Find
G(01) and G(3i).

3.14 You obtain the process output y(¢) = 2 4 (2/+/2)sin(2¢ — 3n/4) for the process input
u(t)=1 + sin(2¢) for a given process. The process is an FOPTD process described by
t(dy(t)/dt) + y(t) = ku(t — 6). Find the parameters t, k and 6.

3.15 Obtain the process output y(#) for the process input u(?) =0.5sin(¢ + ®/4) + 2 sin
(2t — m/4) + 3. The transfer function of the process satisfies G(0i) =5, G(li)=—1 —1i
and G(2i) =—-0.5.

3.16 The ultimate frequency and the ultimate gain of a process are 1.5 and 5.0 respectively.
Find G(1.51). Here, G(s) is the transfer function of the process.

Dynamic Behavior of Linear Processes 107

3.17 Find the ultimate frequency, the ultimate period and the ultimate gain for the process
G(s)=1/(s + 1)°.

3.18 Draw the Bode plots and the Nyquist plots for the following processes and select all the
processes that have the ultimate frequency:

(a) G(S)ZSJIrl

® 60 = o

©) G(s)= (s+11)3

@ Gs) :41035;10).219

(e) G(s) =exp(—s).

Bibliography

Seborg, D.E., Edgar, T.F. and Mellichamp, D.A. (1989) Process Dynamics and Control, John Wiley & Sons, Inc.
Stephanopoulos, G. (1984) Chemical Process Control — An Introduction to Theory and Practice, Prentice-Hall.

Part Two

Process Control

Process control is about making the process output behave in the desired way by manipula-
ting the process input in an automatic way. Process controllers have contributed much to
improving the quality of products and reducing utility consumption. In this part, the PID
controller and the tuning methods are introduced in Chapters 4 and 5. The two chapters are
extremely important to understanding the basic concepts of feedback process control and
various real-world controllers implemented in industry. Chapter 6 introduces several
important tools (Bode plot and Nyquist plot) and terms (characteristic equation, critical
frequency and gain, gain margin and phase margin) to analyze/describe the closed-loop
dynamic characteristics of the designed feedback controller. Enhanced control strategies
using additional measurements and the process model, which have been widely used in
industry, are discussed in Chapter 7.

4

Proportional-Integral-Derivative
Control

PID controllers have been most widely used in industry due to their simplicity, good control
performance and excellent robustness to uncertainties. In this chapter, the structure of the PID
controller and the roles of the three parts (proportional, integral and derivative) of the PID
controller are discussed, followed by the practical issues related to the PID controller, such as
the integral windup, implementation and industrial versions of the controller.

4.1 Structure of Proportional-Integral-Derivative Controllers and
Implementation in Computers/Microprocessors

In this section, the structure of the PID controller is explained and their implementation in
computers or microprocessors is discussed.

4.1.1 Structure of Proportional-Integral-Derivative Controllers

PID controllers are composed of the following three parts:

Proportional (P) part : up(t) = ke(ys(t) — y(1)) (4.1)
ke [

Integral (1) part (1) = L (3(2) — y(7)) de 42)

Derivative (D) part : up(t) = kcrdw (4.3)

dr

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

112 Process Identification and PID Control

The output of the PID controller is the sum of the above-mentioned three parts:

u(t) = up(t) +ur(t) +up(t) = ke(ys(t) —y(1)) + %J;(YS(T) —(1))de +kc’dw

(4.4)

where y4(?), y(¢) and u(¢) denote the setpoint (the desired process output), the process output
and the control output of the PID controller respectively. The constants k.,7; and 74 are called
the ‘proportional gain’, the ‘integral time’ and the ‘derivative time’ respectively. Sometimes,
the term proportional band (PB) is used instead of the proportional gain of k.. The PB is
defined as PB = (Uax — Umin)/ke, Where, . and u,;, are the upper limit and the lower limit
of the control output (equivalently, the actuator output). For example, PB = 100/k, in the
case of Uy ax — Umin = 100. So, the proportional gain k. can be calculated simply if the PB is
given.

As shown in (4.4), the PID controller is just a simple function of which the input is y(7) — y(?)
and the output is u(?). It has been most widely used in industry and it is famous for its simplicity
as well as the excellent control performance and robustness. The PID controller has the three
tuning parameters k., 7; and 74, which should be set appropriately with in-depth consideration
of the process dynamics.

The setpoint y,(¢) and the parameters k., t;and t4 are set by the user. The process output y(?) is
measured. Then, it is straightforward to calculate the output of the PID controller. The outputs
of the integral part u(?) and the derivative part up(¢) are usually calculated by the numerical
integration method and the numerical derivative method respectively. For detailed descriptions
on the numerical integration and the numerical derivative, refer to Chapter 2.

Example 4.1
Calculate the output (u(?) for # > 0) of the PID controller if ys(#) =1 for # > 0 and y(¢) =0 for
t > 0. The parameters are k. = 1.0, 7;=15.0 and 74 =0.2.

Solution up(1)=1.0(1.0 — 0.0) = 1.0 for >0, w(z) = 1.0 [}(1.0 — 0.0) d/5.0 = 1/5.0 for
¢>0 and up(f) = 0.2d(1.0 — 0.0)/dt = 0.0 for > 0. So, u(#) = 1.0 + #5.0.

Example 4.2
Calculate the output (u(¢) for ¢ > 0) of the PID controller if yy(#) = 1 for > 0, y(#) =0 for <0
and y(7) =0. The parameters are k.= 1.0, 7;,=5.0 and 74 =0.2.

Solution up(t)=1.0(1.0—0.0)=1.0 for >0, u(¢) = 1.0 fot(l.O —0.0) d#/5.0 = /5.0 for
t>0, up(t) =0.2d(1.0 — 0.0)/dz = 0.0 for £ >0, up(t) =0 for t =0. So, u(r) =1.0 + /5.0 for
t>0 and u(t) = oo for t =0.

Example 4.3

Calculate the output (u(z) for ¢ > 0) of the PID controller if y,(#) = 1 for t > 0, y,(#) =0 for 1 <0
and y(£) =1 —exp(—1) for ¢ >0, y(f) =0 for 1<0. The parameters are k.= 1.0, 7;,= 5.0 and
Tqg= 0.2.

Proportional-Integral-Derivative Control 113

Solution up(t) =exp(—1) for >0, wu(t) = j(]t exp(—1)dw/5.0 = [1 —exp(—1)]/5.0 for
t >0, up(t)=—0.2exp(—1?) for >0, up(t) =00 for t=0. So, u(t)=0.6exp(—7) + 0.2 for
t>0 and u(t) = oo for t =0.

Example 4.4
What is the transfer function of the PID controller (4.4)?

Solution The input and the output of the PID controller are yy(¢) — y(¢) and u(t) respectively.
Then, the transfer function is

4.1.2 Implementation of Proportional-Integral-Derivative Controllers
in Computers/Microprocessors

Use the following three steps to implement the algorithm of the PID controller in computers
or microprocessors. First, read the process output from the sensor. Second, calculate the
control output of the PID controller. Third, send out the control output to the actuator. In the
second step, the integral part and the derivative part can be calculated by a numerical
integration method and a numerical derivative method respectively. Refer to the following
steps for the detailed descriptions on the implementation of the PID controller. The Euler
method and the backward difference method are used for the integral part and the derivative
part respectively.

1. Read the present (kth sampling) process output y(k) from the sensor.
2. Calculate the controller output on the basis of the present and one-step-before data.

up(k) = ke(ys(k) —y(k)) proportional part (4.5)

ke

1

ui(k) = ui(k— 1)+ — (ys(k) —y(k))At integral part (4.6)

wa(k) = kg @20 =Y (R) = ik = 1) —y(k — 1))

derivati t 4.7
Al erivative par 4.7)

M(k) = up(k) + Ui(k) + le(k) + Upias (48)

3. Send the controller output to the actuator. When the time passes as much as the sampling
time At, repeat from step 1 with the &k + 1-th sampling.

Note that the bias term of uy,;,, in (4.8) is usually used to set the reference value of the control
output. Before you start or restart the PID controller, you should set the bias term to the present

114 Process Identification and PID Control

control output. Otherwise, a big perturbation at the beginning of the PID control may swing
the process for quite a while.

Example 4.5

Simulate the following third-order plus time-delay process controlled by a PID
controller using the Euler method with Az=0.01. In this case, u;,s =0 because u(t) =0
for ¢ <0.

d;yg’) +3d2dy[(1) +3dfl(tl) () = w.:sw u(t—0.2) (4.9)
u(t) = 1.5(ys(2) = y(1)) + EJI (ys(t) = y(z)) dt + 1.5
3:0Jo (4.10)
xo.sw forr >0, u(t)=0 forr<0
ys(t) =10 fort>1, y(r)=0.0 forr<l (4.11)
2
=il - Sl ECE i) w0 =0 (4.12)

Solution To solve the high-order differential equation, it should be rewritten to the following
state-space differential equation according to (1.175)—(1.183). Then, it is straightforward to
solve the state-space system.

dx(f)
1 = Ax(1)+Bu(1-02) (4.13)
y(1) = Cx(1) (4.14)
x(0)=[0 0 0]" (4.15)
00 —1
A=1|1 0 -3 (4.16)
01 -3
B=[1 -03 0] (4.17)
C=[0 0 1] (4.18)

The MATLAB code to simulate the closed-loop control system (4.9)—(4.12) and the
simulation results are given in Table 4.1 and Figure 4.1 respectively. Here, s in the code
corresponds to u;. The historical data i_u(j) = 0, j = 1,2,---, 1000, are initially filled with

Proportional-Integral-Derivative Control

115

Table 4.1 MATLAB code to simulate the closed-loop control system of Example 4.5.

pid_exl.m

clear;
t=0.0; t_final=25.0;
x=[000]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0;
delta_t=0.01; n=round (t_final/delta_t);
C=[001]; theta=0.2; % time delay
h_u=zeros (1,1000);
n_theta=round(theta/delta_t);
kc=1.5; ti=3.0; td=0.5; s=0.0;
for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array (i)=ys;
if(t>1) ys=1.0; else ys=0.0; end
s=s+(kc/ti)* (ys-y) *delta_t;
u=kc* (ys-y) +s+kc*td* ((ys-y) - (ysb-yb)) /
delta_t;
ysb=ys; yb=y; % one sampling before
u_array (i)=u;

for j=1:999
h_u(j)=h_u(3+1);
end

h_u(1000)=u;
dx_dt=g_pid_exl(y,x,h_u(1000-n_theta));
x=x+dx_dt*delta_t;
y=C*x;
t=t+delta_t;
end
figure (1) ;
plot(t_array,ys_array, t_array,y_array);
legend('y_{s}(t)’,"y(t)");
figure (2) ;
plot(t_array,u_array);

g_pid_exl.m

function
[dx_dt]l=g_pid_exl (y,x,u)
A=[00-1;10-3;01-3];
B=[1-0.30.0]";
dx_dt=A*x+B*u;

end

command window
>>pid_exl

zero because u(f) =0 for #1<0. In the case that uy,;,, is set to a nonzero value, this can be
incorporated by setting the initial value of the integral part. For example, set s = uy,;,s instead of
s =0 in Table 4.1 to incorporate u;,; 7 0. In this example, s =0 because of uy;,s =0.

Example 4.6

Simulate the third-order plus time-delay process (4.19) controlled by a PID controller using the
Euler method with At = 0.01. This example is the same as Example 4.5 except that the limits of

the control output are enforced.

Ey() | Py L dy(0)
dr +3 dr? +3 dr

+y(t)=—-03

du(t—0.2)

+u(t—0.2) (4.19)

116 Process Identification and PID Control

1.2 T T T T

PEe
.....
......

08} .

0.6 i

o2t | i]

t

Figure 4.1 Simulation result of Table 4.1 in the case of u;,s=0.

(1) = 1.5(n(1) —y(1)) + Ejlys(r) —y(1)de 4 15

d 3.0 Jo (4.20)
w fort>0 and wpp(t) =0 forz<0

x0.5
u(l) = uPID(t) for\uPID(l)| < 1.2,
u(t) =12 forupp(t)>1.2, (4.21)
u(t)y=—12 forupp(t)< —1.2

Proportional-Integral-Derivative Control

117

ys(t) =1.0 fort>1,

d?y(1)
dr?

_ ()
T

1=

ys(t) =0.0 forz<1

(4.22)

(4.23)
=0

Solution The MATLAB code to simulate the closed-loop control system (4.19)—(4.23) and
the simulation results are given in Table 4.2 and Figure 4.2 respectively. We realize that the

Table 4.2 MATLAB code to simulate the closed-loop control system of Example 4.6.

pid_ex2.m

clear;
t=0.0; t_final=25.0;
x=[000]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0;
delta_t=0.01; n=round (t_final/delta_t);
C=[001]; theta=0.2; % time delay
h_u=zeros(1,1000);
n_theta=round (theta/delta_t);
ke=1.5; ti=3.0; td=0.5; s=0.0;
for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array (i) =ys;
if(t>1) ys=1.0; else ys=0.0; end
s=s+(kc/ti)* (ys-y) *delta_t;
u=kc* (ys-y)+s+kc*td* ((ys-y) - (ysb-yb)) /
delta_t;
if (u>1.2) u=1.2; end
if (u<-1.2) u=-1.2; end
ysb=ys; yb=y; % one sampling before
u_array(i)=u;

for j=1:999
h_u(j)=h_u(3j+1);
end

h_u(1000)=u;
dx_dt=g_pid_ex2(y,x,h_u(1000-n_theta));
x=xX+dx_dt*delta_t;
y=C*x;
t=t+delta_t;
end
figure (1) ;
plot(t_array,ys_array, t_array,y_array);
legend ('y_{s} (t)","y(t)");
figure (2) ;
plot(t_array,u_array);

g_pid_ex2.m

function
[dx_dt]l=g_pid_ex2(y,x,u)

A=[00-1;10-3;01-3];
B=[1-0.30.01";
dx_dt=A*x+B*u;

end

command window
>>pid_ex2

118

Process Identification and PID Control
1.2 : —— : .
1 |"iu ------------

08 1
06F ; -
oal . yslt)]

; [y(t)
0.2 i
0 ']
-0.2 ! ! ! !
0 5 10 15 20 25
t
1.4 T T T T
“l j/ '
'1 -
0.8 i
=t
0.6 i
04+ E
0.2} i
0 1 1 1 1
0 5 10 15 20 25
t

Figure 4.2 Simulation result of Table 4.2.
response of the process becomes sluggish due to the limits of the control output. Also, the
process output stays above the setpoint for a long time.
Example 4.7
Simulate Example 4.5 again with a sampling time Az, =0.5 for the PID controller.

Solution The MATLAB code to simulate the process controlled by a PID controller
for which the sampling time is A#,=0.5 and the simulation results are given in Table 4.3

Proportional-Integral-Derivative Control 119

Table 4.3 MATLAB code to simulate the closed-loop control system of Example 4.7.

pid_ex3.m g_pid_ex3.m
clear; function
t=0.0; t_final=25.0; [dx_dt]2=g_pid_ex3(y,x,u)
x=[000]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; A=[00-1;10-3;01-3];
delta_t=0.01; n=round (t_final/delta_t); B=[1-0.30.0]";
% delta_t for Euler dx_dt=A*x+B*u;
delta_ts=0.5; t_previous=-delta_ts; end
$sampling time for PID
C=[001]; theta=0.2; % time delay command window
h_u=zeros (1,1000);
n_theta=round(theta/delta_t); >>pid_ex3

kc=1.5; ti=3.0; td=0.5; s=0.0;
for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array (i)=ys;
% sample the data for PID every delta_ts
if (t>=(t_previous+delta_ts-delta_t*0.5))
if(t>1) ys=1.0; else ys=0.0; end
s=s+ (kc/ti)* (ys-y) *delta_ts;
u=kc* (ys-y) tstkce*td* ((ys-y) - (ysb-yb))/
delta_ts;
ysb=ys; yb=y; t_previous=t;% one
sampling before

end
u_array(i)=u;
for j=1:999
h u(j)=h_u(j+1);
end

h_u(1000)=u;
dx_dt=g_pid_ex3(y,x,h_u(1000-n_theta));
x=x+dx_dt*delta_t; y=C*x;
t=t+delta_t;

end

figure (1) ;

plot(t_array,ys_array, t_array,y_array);

legend('y_{s}(t)’,"y(t)");

figure (2) ;

plot(t_array,u_array);

and Figure 4.3 respectively. Note that the time interval Az for the Euler method should be
small enough to solve the differential equation with acceptable accuracy. So, the code of
Example 4.5 should be modified as shown in Table 4.3. delta_t*0.5 in the code is just to
compensate for the round-off error of the computer. Comparing Figure 4.3 with Figure 4.1,

120 Process Identification and PID Control

1.5 T T T T

Ys(?)
-emeees (1)

u(t)
n

t

Figure 4.3 Simulation result of Table 4.3.

the larger sampling time can degrade the control performance compared with the case of the
smaller sampling time because the PID controller of the larger sampling time responds more
infrequently.

Example 4.8

Simulate Example 4.5 again when the process output is contaminated by uniformly
distributed random noises between —0.1 and 0.1. The sampling time of the PID controller
is 0.01.

Solution The MATLAB code to simulate the case of the measurement noises and the
simulation results are given in Table 4.4 and Figure 4.4 respectively. It should be noted
that the control output of the PID controller fluctuates severely for the measurement
noises. This can cause damage to the actuator. The severe fluctuation originates from the
derivative action of the PID controller. As shown in (4.7), it is clear that the derivative
action is extremely sensitive to the measurement noises if the sampling time for the PID

Proportional-Integral-Derivative Control 121

Table 4.4 MATLAB code to simulate the closed-loop control system of Example 4.8.

pid_ex4.m g_pid_ex4.m
clear; function
t=0.0; t_final=25.0; [dx_dt]l=g_pid_ex4 (y,x,u)
x=[000]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; A=[00-1;10-3;01-31;
delta_t=0.01; n=round (t_final/delta_t); B=[1-0.30.0]";
C=[001]; theta=0.2; % time delay dx_dt=A*x+B*u;
h_u=zeros (1,1000); end
n_theta=round(theta/delta_t);
kc=1.5; ti=3.0; td=0.5; s=0.0; command window
rand(’seed’,0); noise=0.2* (rand(1,n)-0.5);
for i=1:n >>pid_ex4

t_array(i)=t; y_array(i)=y;
ys_array(i)=ys;

if(t>1) ys=1.0; else ys=0.0; end
s=s+ (kc/ti)* (ys-y) *delta_t;

u=kc* (ys-y) +stkc*td* ((ys-y) -
(ysb-yb)) /delta_t;

ysb=ys; yb=y; % one sampling before
u_array (i)=u;

for j=1:999
h_u(j)=h_u(j+1);
end

h_u(1000)=u;
dx_dt=g_pid_ex4(y,x,h_u(1000-n_theta));
x=x+dx_dt*delta_t;
y=C*x+noise (i) ;
t=t+delta_t;
end
figure (1) ;
plot(t_array,ys_array, t_array,y_array);
legend ("y_{s} (£)’,"y(E)");
figure (2) ;
plot(t_array,u_array);

controller is very small. So, too small a sampling time for the PID controller is not
recommended.

Example 4.9
Simulate Example 4.8 again with a sampling time of 0.1 for the PID controller.

Solution The MATLAB code to simulate the case of the measurement noises with a sampling
time of 0.1 and the simulation results are given in Table 4.5 and Figure 4.5 respectively. The PID

122 Process Identification and PID Control

t

Figure 4.4 Simulation result of Table 4.4.

controller shows an acceptable fluctuation of the control output for a sampling time of 0.1 and
almost the same control performance as in the case of the very small sampling time of
Figure 4.4.

4.2 Roles of Three Parts of Proportional-Integral-Derivative
Controllers

The control output up(?) of the proportional part is proportional to the error yy(¢) — y(¢) as shown
in (4.1). This means that the proportional part plays a role in pushing the process output to the
setpoint as much as the error.

For the usual processes (open-loop stable processes), the control output should be a nonzero
constant to keep the process output to a nonzero setpoint. For example, imagine a control
system to control the room temperature y(f) of a house in winter by adjusting the fuel
consumption u(¢) of the boiler. It is obvious that a constant amount of the fuel u(#) should be
provided continuously to keep up an appropriate room temperature (y;=y(f) =a nonzero
setpoint). Meanwhile, the following proportional-derivative (PD) controller output is u(f) =0

Proportional-Integral-Derivative Control 123

Table 4.5 MATLAB code to simulate the closed-loop control system of Example 4.9.

pid_ex4.m g_pid_ex4.m
clear; function
t=0.0; t_final=25.0; [dx_dt]l=g_pid_ex5(y,x,u)
x=[000]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; A=[00-1; 10-3;
delta_t=0.01; n=round(t_final/delta_t);% 01-31;
delta_t for Euler B=[1-0.30.0]";
delta_ts=0.1; t_previous=-delta_ts; % dx_dt=A*x+B*u;
sampling time for PID end
C=[001]; theta=0.2; % time delay
h_u=zeros (1,1000); command window
n_theta=round(theta/delta_t);
kc=1.5; ti=3.0; td=0.5; s=0.0; >>pid_ex4

rand(’seed’,0); noise=0.2* (rand(1l,n)-0.5);
for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array(i)=ys;
% sampling for PID
if (t>=(t_previous+delta_ts-delta_t*0.5))
if(t>1) ys=1.0; else ys=0.0; end
s=s+(kc/ti)* (ys-y) *delta_ts;
u=kc* (ys-y) +s+kc*td* ((ys-y) - (ysb-yb)) /
delta_ts;
ysb=ys; yb=y; % one sampling before
t_previous=t;
end
u_array (i)=u;
for j=1:999
h_u(j)=h_u(j+1);
end
h_u(1000)=u;
dx_dt=g_pid_ex5(y,x,h_u(1000-n_theta));
x=x+dx_dt*delta_t; y=C*x+noise (i) ;
t=t+delta_t;
end
figure (1) ;
plot(t_array,ys_array, t_array,y_array);
legend ("y_{s}(t)’,"y(t)");
figure (2) ;
plot(t_array,u_array);

if the error y; — y(?) is zero at steady state:
dr '

That is, the output of the PD controller cannot be a nonzero constant when the error is zero at
steady state. So, the PD controller cannot keep the process output to a nonzero setpoint for

u(t> = uP(t> + ”D(l) = kc()’s _)’(t)) +ketq

124 Process Identification and PID Control

1.5 T T T T

u(t)

t

Figure 4.5 Simulation result of Table 4.5.

open-loop stable processes, resulting in an offset. The offset is defined as the error yy(¢) — y(#)
at steady state.

The offset can be calculated easily. Equation (4.25) represents the relationship between
the process output and the controller output at steady state, where k is called the static gain or
DC gain of the process. Equation (4.24) becomes (4.26) at steady state.

Vss(8) = kuss(1) (4.25)

uss (1) = ke(ys — yss(2)) (4.26)

where the subscript ‘ss’ denotes steady state. From (4.25) and (4.26), the offset is

s
Vs 7)’ss(t) = 1+ Kk (427)

If the integral part is added to the controller, then the offset can be rejected because
the integral part can be a nonzero constant even though the present error is zero. That is, (4.4)

Proportional-Integral-Derivative Control 125

e(f) 3

T4 de(t/dt

Td
e(l)

v

v

t t+ Tq

Figure 4.6 Extrapolation using the derivative of the error.

at steady state becomes (4.28) due to the accumulated error if the offset is zero:

k t
ug(t) = —CJ (ys — y(7)) dt = nonzero constant (4.28)
Ti Jo
From comparison of (4.25) and (4.28), the integral of the error at steady state can be
calculated:

Ti

j:@s ~3(0) de =7, (4.29)

In summary, the conclusion is that the integral part of the PID controller plays an important
role in rejecting the offset. This is possible because the integral term can be a nonzero constant
due to the accumulated error.

14d(ys — y(¢))/d? represents approximately the increment of the error after 4 from the present
time ¢, as shown in Figure 4.6. Therefore, the derivative part plays a role in rejecting the future
error in advance by increasing the control output in proportion to the future error. This means
that the derivative part can enhance the robustness of the PID controller by considering the
future change of the error.

Example 4.10

Find the final values of y(#) and u(?) of the process (4.30) and the controller (4.31) at steady
state. Assume that y,(#) =y is constant and the signals y(#) and u(f) converge to constant
values.

&y() | dy(r)

ap T2 Ty =u(t-05) (4.30)
ult) = 1204(0) ~ (1) + 0.6 L 230) @31)

Solution At steady state, all the derivatives are zero and the delayed value is the same as the
present value (that is, ys(f —) = y(?)). Then, (4.30) and (4.31) become

Yss = Ussy, Uss = 1-2(ys,ss _)’ss) (432)
Yss = 12)’“\/22 (433)

126 Process Identification and PID Control

where the subscript ‘ss’ denotes steady state. Note that the PD controller shows the offset as
shown in (4.33).

Example 4.11
Can the P controller (4.35) reject the offset for the integrating process (4.34) for the constant

setpoint of y4(f) =y, ss? The integrating process means that the process has a zero pole as shown
in (4.34):

——u(s) (4.34)

u(s) = 2.5(ys(s) — () (4.35)

Solution Equations (4.34) and (4.35) are equivalent to the following equations:

B0 280, B0 439
u(t) = 2.5(ys(1) = y(1)) (4.37)

The zero offset means yy(?) =ys s Then, ug =0 from (4.37). The process also satisfies
0 = ug at steady state, which means that a zero control output is needed to keep up a nonzero
process output for the integrating process. So, the offset can be rejected by the P controller.
Meanwhile, there is always an offset if the P controller is used for an open-loop stable process
because a nonzero control output is needed to keep up the nonzero process output for the open-
loop stable process.

Example 4.12
Calculate the final value of the integral part of the PID controller (4.38) for the process (4.30)
when the offset is zero.

u(t) = kee(t) + ’;—L e(t) dt + ketq dz(l’) (4.38)

Solution Because the offset is zero, ey () = 0. The derivative de(¢)/dz is zero at steady state.
So, the output of the PID controller (4.38) becomes ugs = ko/7; fé e(t) dt at steady state, which
is not necessarily zero due to the accumulation of the past errors even though the present error is
zero (eg(?) =0). And y, = ug is valid for (4.30) at steady state. So, ys = k/7; fé e(t) dr.

Example 4.13
How can PI (or I, PID) controllers reject the offset for the open-loop stable process?

Solution Because the controller contains the integral term, the controller output can be a
nonzero value (corresponding to the setpoint) due to the accumulated integral term even though

Proportional-Integral-Derivative Control 127

the present error is zero. Meanwhile, P or PD controllers cannot reject the offset for the open-
loop stable process because the control output of the P or PD controllers is zero if the present
error is zero.

Example 4.14

Simulate the following SOPTD process controlled by the P controller and confirm that the
offset converges to the expected value:

Ey() | dy()

qp T2g Ty =0Tur-03) (4.39)

u(t) = 3.5(ys(1) —y(£)) fort>0, u(t)=0 fort<0 (4.40)
ys(t) =10 fort>1, y(1)=00 forr<l (4.41)
dzdy,(zt) e dﬁ(tt) _=¥0=0 d”;(tt) =u0)=0 (4.42)

Solution At steady state, all the derivative values are zero and the delayed value is the same as
the present value. Then, (4.39) and (4.40) become

Vss = 0.71/!55, Uss = 35(1 _yss) (443)

So, the final value of the process output is y;, =0.7101 and the offset is 1 — y,, =0.2899.
The MATLAB code and the simulation results of Table 4.6 and Figure 4.7 respectively
confirm this.

Example 4.15
Simulate the following SOPTD process controlled by the PID controller and confirm that the
integral part of the PID controller converges to the expected value:

d?y(t dy(t
dytg) +3% +y(t) = —0.2

du(t—0.3)
dt

+0.5u(1 — 0.3) (4.44)

u(t) =3.0(y5(1r) —y(2)) + %L(ys(r) —y(r))dt fort>0, u(t)=0 fort<0 (4.45)

yo() =10 fort>1, y()=00 forr<l (4.46)

128 Process Identification and PID Control

Table 4.6 MATLAB code to simulate the PID control system of Example 4.14.

pid_role_ex5.m g_pid_role_ex5.m
clear; function
t=0.0; t_final=25.0; [dx_dt]l=g_pid_role_ex5
x=[00]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; (y,x,u)
delta_t=0.01; n=round(t_final/delta_t); A=[0-1;1-2]:
C=[01]; theta=0.3; % time delay B=[0.70]1";
h_u=zeros(1,1000); dx_dt=A*x+B*u;
n_theta=round (theta/delta_t); end
kc=3.5;
for i=1:n command window

t_array(i)=t; y_array(i)=y;
ys_array(i)=ys; >>pid_role_ex5
if(t>1) ys=1.0; else ys=0.0; end
u=kc* (ys-y) ;

u_array (i)=u;

for 3=1:999
h_u(j)=h_u(3+1);
end

h_u(1000)=u;
dx_dt=g_pid_role_ex5(y,x,h_u
(1000-n_theta)) ;
x=x+dx_dt*delta_t;
y=C*x;
t=t+delta_t;
end
figure (1) ;
plot(t_array,ys_array, t_array,y_array);
legend ('y_{s}(t)’,"y(t)");
figure (2) ;
plot(t_array,u_array);

du(t)
dr |,

d?y(1)
dr?

=u(0) =0 (4.47)

=0

Solution At steady state, all the derivative values are zero and the delayed value is the same
as the present value. Also, the offset is zero because the I term is included. Then, (4.44)
and (4.45) become

3.0 (
l =y =05uy, us==——|(1—y(1))de (4.48)

Proportional-Integral-Derivative Control 129

o8| i % .

06} .:- K i

04r | i %] 1

u(t)
N

o

t

Figure 4.7 Simulation result of Table 4.6.

So, the integral part of (3.0/3.0) f(;(l —y(t)) dt converges to 2.0. The MATLAB code and
the simulation results of Table 4.7 and Figure 4.8 respectively confirm this.

4.3 Integral Windup

Actuators, such as valves, motors, electric powers and so on, always have a lower limit and an
upper limit. When the actuators are at their limit values (which is called saturation), the
dynamics of the process output become much more sluggish than the case of no actuator
limitations for a big step setpoint change or big disturbance. So, the integral part of the PID
controller increases rapidly. This phenomenon is called the integral windup. Consider the
simulation result in Figure 4.9.

As shown in Figure 4.9, the control output (actuator) is saturated from t=1.0 to t=9.0.
During the period from #=1.0 to #=35.5, the integral part of the PID controller increases
rapidly because the error decreases slowly due to the saturation. Note that the final integral
part of the PID controller is already determined (1.0 in Figure 4.9). Owing to the actuator
saturation, the integral part up to the rising time would be much bigger than the final value, as

130

Process Identification and PID Control

Table 4.7 MATLAB code to simulate the PID control system of Example 4.15.

pid_role_ex6.m

clear;

t=0.0; t_final=25.0;

x=[00]"; y=0.0; yb=0.0;

ys=0.0; ysb=0.0;

delta_t=0.01;n=round (t_final/delta_t);
C=[01]; theta=0.3; % time delay
h_u=zeros (1,1000);

g_pid_role_ex6.m

function
[dx_dt]l=g_pid_role_ex6(y,x,u)

A=[0-1;1-3];

B=[0.5-0.2]1";

dx_dt=A*x+B*u;

end

n_theta=round (theta/delta_t);
kc=3.0; ti=3.0; td=0.0; s=0.0;
for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array(i)=ys; I_array(i)=s;
if(t>1) ys=1.0; else ys=0.0; end
s=s+ (kc/ti) * (ys-y) *delta_t;
u=kc* (ys-y) +s+kc*td* ((ys-y) -
(ysb-yb)) /delta_t;
ysb=ys; yb=y; % one sampling before
u_array(i)=u;

for j=1:999
h_u(j)=h_u(j+1);
end

h_u(1000)=u;
dx_dt=g_pid_role_ex6(y,x,h_u
(1000-n_theta)) ;s
x=x+dx_dt*delta_t; y=C*x;
t=t+delta_t;
end
figure (1) ;
plot(t_array,ys_array, t_array,y_array) ;
legend ('y_{s}(t)’,"y(t)");
figure (2) ;
plot(t_array,u_array, t_array, I_array);
legend ("u(t)’,"u_{i}(t)’);

command window

>>pid_role_ex6

shown in Figure 4.9. So, a big overshoot (i.e. a big negative error) is inevitable to reduce the
already accumulated integral part to the final integral part (refer to the integral part from

t=5.5 to t=15.0 in Figure 4.9). In this way, the
performance.

4.3.1 Anti-Windup

integral windup degrades the control

Several techniques are available to prevent integral windup. The two anti-windup methods of
the conditional integration and back calculation are introduced.

Proportional-Integral-Derivative Control 131

1.5 T T T T

5 10 15 20 25

u(t)
[P ui(t)

0 5 10 15 20 25
t

Figure 4.8 Simulation result of Table 4.7.

4.3.1.1 Conditional Integration

The simplest anti-windup method to prevent integral windup is freezing the integral action
when the actuator is at the limit value. The code for the anti-windup method is exemplified as
follows.
If u(k) > tmax, no update of the integral part like u;(k) = u;(k — 1) and set u(k) = tmax
(4.49)

If u(k) < tmin, no update of the integral part like u;(k) = u;(k — 1) and set u(k) = tmin
(4.50)

where u,;, and u,,,, are the lower limit and the upper limit respectively. Then, the calculation of
the PID control with the anti-windup technique for the kth sample is summarized as follows:

up(k) = ke(ys(k) —y(k)) proportional part (4.51)

132 Process Identification and PID Control

1.4 T T T T

1.2

0.8

0.6

0.4

T
¢
:
<
~
—
=

0.2

......
8 .~

05 uy |

t

(ys(k) —y(k))At integral part (4.52)

wa() = vy 2B =Y(R) = Ok 1) —y(k — 1))

As derivative part (4.53)

u(k) = up(k) +ui(k) 4+ uq(k) (4.54)

If u(k) > tmax, i(k) = u;(k—1) (no update) and u(k) = tmax (4.55)
If u(k) <umin, ui(k) =u;(k—1) (no update) and u(k) = timin (4.56)

Other conditional integrations can also be used. For example, the integral action can be
stopped when the control output or the integral part is larger than a designated value.

Proportional-Integral-Derivative Control 133

Table4.8 MATLAB code to simulate a closed-loop control system with an anti-windup technique of the
conditional integration.

pid_antiwindupl.m g_pid_antiwindupl.m
clear; function
t=0.0; t_final=25.0; [dx_dt]l=g_pid_antiwindupl
x=[000]"; y=0.0; yb=0.0; (y,x,u)
ys=0.0; ysb=0.0; A=[00-1;10-3;01-37;
delta_t=0.01; B=[100.0]";
n=round (t_final/delta_t); dx_dt=A*x+B*u;
C=[001]; theta=0.0; % time delay end
h_u=zeros (1,1000);
n_theta=round(theta/delta_t); command window
kc=2.0; ti=2.5; td=0.5; s=0.0;
for i=l:n >>pid_antiwindupl

t_array(i)=t; y_array(i)=y;
ys_array(i)=ys; I_array(i)=s;

if(t>1) ys=1.0; else ys=0.0; end

s_n=s+ (kc/ti) * (ys-y) *delta_t;

u=kc* (ys-y) +s_n+kc*td* ((ys-y) -

(ysb-yb)) /delta_t;

if ((u<=1.2) &(u>=-1.2)) s=s_n; end

if (u>1.2) u=1.2; end

if (u<=1.2) u=-1.2; end

ysb=ys; yb=y; % one sampling before

u_array(i)=u;

for j=1:999
h_u(j)=h_u(3+1);
end

h_u(1000)=u;

dx_dt=g_pid_antiwindupl

(y,x,h_u(1000-n_theta));
x=x+dx_dt*delta_t; y=C*x;
t=t+delta_t;

end

figure (1) ;

plot(t_array,ys_array, t_array,y_array);

legend ("y_{s}(t)’,"y(t)");

figure (2) ;

plot(t_array,u_array, t_array,I_array);

legend ("u(t)’,"u_{i} (t)");

Consider the simulation in Table 4.8 and Figure 4.10. Equation (4.57) is controlled
by the PID controller k.= 2.0, 7;= 2.5 and 74 =0.5 and the anti-windup technique (4.49)-
(4.56) is used. The lower limit and the upper limit of the actuator are —1.2 and 1.2

134 Process Identification and PID Control

1 T e
08} |
0.6 i]
o4t | {]
; Ys(t)
0.2 :." e y(f) | A
o 1 1 1 1
0 5 10 15 20 25
t
1.4 T T T T
121 R
| r\/
1 E
0.6 R
0.4r u(f) |
[ui(t)
0.2 i
0 1 1 1 1
0 5 10 15 20 25
t
Figure 4.10 Simulation result of Table 4.8.
respectively.
Ey() | () L dy(0)
3 3 1) =u(t 4.57
ip T3 t3g Py =u) (4.57)
dy(7) dy(?) du(7)
ar? |_, dr |_, y(0) =0, dr |, u(0) (4.58)

The MATLAB code to simulate the closed-loop control system with the anti-windup
technique and the simulation results are given in Table 4.8 and Figure 4.10 respectively.
4.3.1.2 Back Calculation

The other anti-windup technique uses an internal feedback loop, which makes the integral part
converge to the limit of the actuator. The calculation of the PID control with the anti-windup
technique of the back calculation for the kth sample is summarized as follows:

up(k) = ke(ys(k) —y(k)) proportional part (4.59)

Proportional-Integral-Derivative Control 135

(ys(k) —y(k)) = (ys(k = 1) —y(k — 1))

ug(k) = ketq Ar derivative part (4.60)
upip (k) = up (k) +ui(k) +uq(k) (4.61)

If upp (k) > thmax, U(k) = tmax (4.62)

If upip (k) < thmin, u(k) = thmin (4.63)

If upip (k) > tmin and wpip (k) < thmax, u(k) = upip(k) (4.64)

wi(k+1) =u(k)+ Tl(u(k) —upp (k)) + l%(yp(k) —y(k))|At integral part (4.65)
t 1

In (4.65), the internal feedback term (u(k) — upp(k))/7, is zero if the actuator is not saturated
as shown in (4.64). If the actuator is saturated at the upper limit like (4.62), the term decreases
the integral part u;(k + 1) because the term is negative. On the other hand, it increases the
integral part if the actuator is saturated at the lower limit like (4.63) because the term is positive.
So, the term (u(k) — upip(k))/z,in (4.65) makes the output of the PID controller converge to the
operation range of the actuator. 7, is called the tracking time constant. The recommended range
of the tracking time constant is 74 <17, < 7T;.

Consider the simulation in Table 4.9 and Figure 4.11. This is the same as in Table 4.8 except
that the anti-windup technique used is the back calculation.

4.4 Commercial Proportional-Integral-Derivative Controllers

Various modifications of the PID controller are introduced in this section, followed by unified
structures of commercial PID controllers. Before tuning the parameters of the commercial PID
controller, one must check the structure of the PID controller because its structure can be totally
different from the structure of the ideal PID controller of (4.4).

4.4.1 Noninteracting, Interacting and Parallel
Proportional-Integral-Derivative Controllers

The structure of a noninteracting PID controller is the same as that of the ideal PID controller
in (4.4) as follows:

O
G.(s) =) =) ke + s + ketas (4.66)

The implementation form of the noninteracting PID controller is demonstrated below.

up(k) = ke(ys(k) —y(k)) proportional part (4.67)

u,-(k) = ui(k— 1)+

k_f (ys(k) —y(k))At integral part (4.68)

1

136

Process Identification and PID Control

Table4.9 MATLAB code to simulate a closed-loop control system with an anti-windup technique of the

back calculation.

pid_antiwindup2.m

clear;

t=0.0; t_final=25.0;

x=[000]"; y=0.0; yb=0.0;

ys=0.0; ysb=0.0;

delta_t=0.01;

n=round (t_final/delta_t);

C=[001]; theta=0.0; % time delay

h_u=zeros (1,1000);

n_theta=round (theta/delta_t);

kc=2.0; ti=2.5; td=0.5;

tt=2.0; s=0.0;

for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array(i)=ys; I_array(i)=s;
if(t>1) ys=1.0; else ys=0.0; end
u_pid=kc* (ys-y) +s+kc*td*
((ys-y)-(ysb-yb))/delta_t;
if ((u_pid<=1.2) & (u_pid>=-1.2))
u=u_pid; end

if (u_pid>1.2) u=1.2; end

if (u_pid<-1.2) u=-1.2; end

s=s+ ((u-u_pid) /tt+ (kc/ti)*

(ys-y))*delta_t;

ysb=ys; yb=y; % one sampling before

u_array(i)=u;

for j=1:999
h_u(j)=h_u(j+1);
end

h_u(1000)=u;

dx_dt=g_pid_antiwindup2

(yv,x,h_u(1000-n_theta));

x=x+dx_dt*delta_t; y=C*x;
t=t+delta_t;

end

figure (1) ;

plot(t_array,ys_array, t_array,y_array);
legend("y_{s}(t)',"y(t)");

figure (2) ;

plot(t_array,u_array, t_array,I_array);
legend("u(t)’,"u_{i}(t)"):

g_pid_antiwindup2.m

function
[dx_dt]=g_pid_antiwindup?2
(y,x,u)

A=[00-1;10-3;01-31;

B=[100]";

dx_dt=A*x+B*u;

end

command window

>>pid_antiwindup?2

Proportional-Integral-Derivative Control 137

06]

oaf | f |
02l T 2 ()] i

1.5 T T T T

u(t)
......... ui(t) —
-05 $! ! ! !
0 5 10 15 20 25
t
Figure 4.11 Simulation result of Table 4.9.
ug(k) = ketq (k) — y(k)) - ()ng —D-yk—1)) derivative part (4.69)
u(k) = up(k) +ui(k) 4+ uq(k) (4.70)

On the other hand, the transfer function and the implementation form of the interacting PID
controller are as follows:

_u(s) _ g 1 .
Ge(s) = 56— k. (1 + T}S) (141is) (4.71)
(k) = (ys(k) —y(k)) + 1} Os(k) =y(k)) = (yASEk —D=y(k=1) derivative part
(4.72)
u;(k) = k'ui(k) proportional part (4.73)

ul(k) = uj(k—1) + k—icuid(k)At integral part (4.74)
T

i

138 Process Identification and PID Control

u(k) = ui,(k) +ul (k) (4.75)

The structure of the parallel PID controller is the same as that of the ideal PID controller
in (4.4), but the definitions of the parameters are different, as shown in (4.76):

u(s)

kP
— = kP + - 4+ kBs 4.76
52 —30) g Tk (4.76)

G.(s)

4.4.2 Relationship between Different Forms of
Proportional-Integral-Derivative Controllers

The noninteracting form (4.66) is obtained from the interacting form (4.71) by setting the
parameters as follows. The derivation is straightforward.

ke = ki (1 + %) (4.77)

T (4.78)
tith

=1 4.79

td T+ Ty ()

The interacting form (4.71) is obtained from the noninteracting form (4.66) by setting the
parameters as follows. The derivation is also straightforward.

i ket key/1 —414/7;

c) (4.80)
i_Ti+Ti\/1_4Td/Ti 481
T = 2 (-8)
i T Tiy/ 1 =4t/ 480
Td_ 2 (.)

Equations (4.80)—(4.82) are valid only if 7; >4t4. So, the noninteracting form is more
general than the interacting form. The two forms of the parallel and noninteracting forms are
interchangeable with the following relationship:

K =key K= k= kerg (4.83)

Example 4.16
Obtain the interacting PID controller having the same closed-loop response as in Figure 4.1.
Confirm it with simulation.

Solution Because the parameters of the noninteracting PID controller are k.=1.5, T = 3.0and
74 = 0.5, the equivalent parameters of the interacting PID controllerare k, = 1.18301; = 2.3660

Proportional-Integral-Derivative Control

139

Table4.10 MATLAB code to simulate a closed-loop control system with an interacting PID controller.

pid_interactingl.m

clear;
t=0.0; t_final=25.0;
x=[000]"; y=0.0; yb=0.0;
ys=0.0; ysb=0.0;
delta_t=0.01;
n=round (t_final/delta_t);
C=[001]; theta=0.2;
% time delay
h_u=zeros (1,1000);
n_theta=round (theta/delta_t);
kc=1.1830; ti=2.3660;
td=0.6340; s=0.0;
for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array (i) =ys;
if(t>1l) ys=1.0; else ys=0.0; end
ud=(ys-y) +td* ((ys-y)
- (ysb-yb))/delta_t;
s=s+ (kc/ti) *ud*delta_t;
u=kc*ud+s;
ysb=ys; yb=y; %
u_array(i)=u;

one sampling before

for j=1:999
h_u(j)=h_u(j+1);
end

h_u(1000)=u;
dx_dt=g_pid_ interacting
1(y,x,h_u(1000-n_theta));
x=x+dx_dt*delta_t; y=C*x;
t=t+delta_t;
end
figure (1) ;
plot(t_array,ys_array,
t_array,y_array);
legend("y_{s}(t)’,"y(t)");
figure (2); plot(t_array,u_array);

g_pid_interactingl.m

function
[dx_dt]l=g_pid_interactingl (y,x,u)
A=[00-1; 10-3;01-31;
B=[1-0.30.0]";

dx_dt=A*x+B*u;

end

command window

>>pid_interactingl

rij = 0.6340 by (4.80)—(4.82). The MATLAB code to simulate the closed-loop control system
with the interacting PID controller and the simulation results are given in Table 4.10 and
Figure 4.12. As shown in Figure 4.12 and Figure 4.1, the same closed-loop response is obtained.

Example 4.17

Obtain the parameters of the parallel PID controller corresponding to the noninteracting PID

controller k.= 1.5, 7;=3.0 and 74=0.5.

140 Process Identification and PID Control

1.2 T T T T

08} H i

sl orenns y(b) |

02t | i _

|
o
(V)

u(t)

t

Figure 4.12 Simulation result of Table 4.10.

Solution The equivalent parameters of the parallel PID controller are k? = 1.5,k = 1.5/3.0
and £ = 1.5 x 0.5 by (4.83).

4.4.3 Two-Degree-of-Freedom Proportional-Integral-Derivative
Controllers

The two-degree-of-freedom PID controller uses the following setpoint weighting:

up(k) = ke(wpys(k) —y(k)) proportional part (4.84)

Proportional-Integral-Derivative Control 141

ui(k) = wi(k—1)+ %(ys(k) —y(k))At integral part (4.85)
ug(k) = ketg (ways(k) —y(k)) — (Zd[ys(k —D-ylk—1) derivative part (4.86)
u(lk) = uy (k) + i (k) + g (k) (4.87)

Usually, wy, ranges from 0 to 1 and wq is O or 1. w,, can reduce the overshoot for a step
setpoint change without changing the parameters (k., 7; and 74) of the PID controller. This
makes it possible to improve the control performances for the setpoint change without
degrading the control performances for the input disturbance rejection. The detailed
descriptions will be given later in this book. wy can prevent the derivative kick, which
happens when a step setpoint change enters. Consider the simulation results of Figures 4.1,
4.3, 44 and 4.5. Large peaks appear at the instant of the step setpoint change, called
derivative kick. From (4.86) with wq =1, it is clear that the derivative kick happens at the
instant and it becomes severe as decreasing the sampling time. The derivative kick can cause
damage to the actuator. The choice of wy =0 can remove the derivative kick, called anti-
derivative-kick. The control action with wq =1 is the same as the control action with wqg =0
except at the instant of the step setpoint change, because the setpoint is constant except at the
instant.

Example 4.18
Simulate again Figure 4.1 with the anti-derivative-kick (wyq=0). Compare the closed-loop
responses.

Solution The MATLAB code to simulate the closed-loop control system with the anti-
derivative-kick and the simulation results are given in Table 4.11 and Figure 4.13. As
shown in Figure 4.1 and Figure 4.13, the closed-loop response of the anti-derivative-kick is
a little bit worse than that of the ideal PID controller. Instead, the derivative kick
is removed.

Example 4.19
Simulate again Figure 4.3 with w, =0.6. Compare the closed-loop responses.

Solution The MATLAB code to simulate the two-degree-of-freedom PID controller and the
simulation results are given in Table 4.12 and Figure 4.14. Comparing Figure 4.3 with
Figure 4.14, the control performance for the setpoint change is improved without changing
the parameters (k., 7; and 74) of the PID controller.

4.4.4 Noise-Suppressing Proportional-Integral-Derivative Controllers

The derivative part of the PID controller is very sensitive to measurement noise when
the sampling time is small, as shown in Figure 4.4. To overcome this problem, the following

142

Process Identification and PID Control

Table 4.11 MATLAB code to simulate a closed-loop control system with an anti-derivative-kick

PID controller.

pid_antiderivativel.m

clear;

t=0.0; t_final=25.0;
x=[000]"; y=0.0; yb=0.0;
ys=0.0; ysb=0.0;
delta_t=0.01;

n=round (t_final/delta_t);
C=[001]; theta=0.2;

% time delay

g_pid_antiderivativel.m

function
[dx_dt]l=g_pid_antiderivativel
(y,x,u)

A=[00-1; 10-3;01-31;
B=[1-0.30.0]";
dx_dt=A*x+B*u;

h_u=zeros (1,1000);
n_theta=round(theta/delta_t);
kc=1.5; ti=3.0; td=0.5; s=0.0; wd=0.0;
for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array(i)=ys;
if(t>1) ys=1.0; else ys=0.0; end
s=s+(kc/ti)* (ys-y) *delta_t;
u=kc* (ys-y) +st+tkc*td*
((wd*ys-y) - (wd*ysb-yb)) /delta_t;
ysb=ys; yb=y; % one sampling before
u_array(i)=u;

for j=1:999
h_u(j)=h_u(j+1);
end

h_u(1000)=u;

dx_dt=g_pid_antiderivativel
(y,%x,h_u(1000-n_theta));

x=x+dx_dt*delta_t;

y=C*x;

t=t+delta_t;

end
figure (1) ;
plot(t_array,ys_array, t_array,y_array)
legend("y_{s}(t)’,"y(t)");
figure (2); plot(t_array,u_array);

command window

>>pid_antiderivativel

noise-suppressing PID controller can be used:

Gols) = —— 4 0

k. k.
¢ Ketdd (4.88)
Tis 1+ atgs

up(k) = ke(ys(k) —y(k)) proportional part (4.89)

Proportional-Integral-Derivative Control

143

12f ' ' ' .
| .
08} .
06F H |
04}]
: ¥s(t)
0.2 : 4
K PETPY PEP y(t)
(08 o i
0 5 10 15 20 25
t
2 T T T T
15F -
g 0
0.5 i
O 1 1 1 1
0 5 10 15 20 25
t
Figure 4.13 Simulation result of Table 4.11.
ke .
ui(k) = wi(k — 1)+ — (ys(k) —y(k))At integral part
T

(s(k) =y(k)) = sk = 1) —y(k = 1))

nf _
Uy (k) = kc‘t'd Ar

ug(k) = ug(k — 1)+ A—Tt (Ui (k —1) —ug(k — 1)) derivative part
aty

u(k) = up (k) + ui(k) + ua (k)

(4.90)

(4.91)

(4.92)

(4.93)

Equation (4.92) can be derived by applying the Euler method to u4(s) = 13 (s)/(atas + 1),
and equivalently dug(7)/dt + ug(1)/(@tq) = ul (¢)/(atq) in a straightforward manner. Usually,
a ranges from 0.05 to 0.25. Better robustness to noise is obtained for a bigger « value, but the

control performance degrades more as the « value increases.

144 Process Identification and PID Control

Table 4.12 MATLAB code to simulate a closed-loop control system with a two-degree-of-freedom

PID controller.

pid_tdofl.m

clear;
t=0.0; t_final=25.0;
x=[000]"; y=0.0; yb=0.0;
ys=0.0; ysb=0.0;
delta_t=0.01;
n=round (t_final/delta_t);
% delta_t for Euler
delta_ts=0.5;t_previous=-delta_ts; %
sampling time for PID
C=[001]; theta=0.2; % time delay
h_u=zeros (1,1000);
n_theta=round (theta/delta_t);
kc=1.5; ti=3.0; td=0.5; s=0.0; kp=0.6;
for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array (i)=ys;
if (t>=(t_previous+delta_ts
-delta_t*0.5)) % sampling
if(t>1) ys=1.0; else ys=0.0; end
s=s+ (kc/ti) * (ys-y) *delta_ts;
u=kc* (kp*ys-y) ts+kc*td*
((ys-y) - (ysb-yb))/delta_ts;
ysb=ys; yb=y; % one sampling before
t_previous=t;

end

u_array(i)=u;

for j=1:999
h_u(j)=h_u(j+1);

end

h_u(1000)=u;
dx_dt=g_pid_tdofl(y,x,h_u(1000-n_theta));
x=x+dx_dt*delta_t; y=C*x;
t=t+delta_t;
end
figure (1) ;
plot(t_array,ys_array, t_array,y_array);
legend ("y_{s} (L)', y(t)");
figure (2); plot(t_array,u_array);

g_pid_tdofl.m

function
[dx_dt]l=g_pid_tdofl
(y,x,u)

A=[00-1;10-3;01-371;

B=[1-0.30.0]";
dx_dt=A*x+B*u;

end

command window

>>pid_tdofl

Proportional-Integral-Derivative Control 145

1.5 T T T T

0 5 10 15 20 25

251 B

u(t)

1.5} -

t
Figure 4.14 Simulation result of Table 4.12.

Example 4.20
Simulate again Figure 4.4 with a =0.24. Compare the closed-loop responses.

Solution The MATLAB code to simulate the noise-suppressing PID controller and the
simulation results are given in Table 4.13 and Figure 4.15. Comparing Figure 4.4 with
Figure 4.15, the robustness to the noise is improved.

4.4.5 Unified Structure of Proportional-Integral-Derivative Controllers

The two-degree-of-freedom and noise-suppressing PID controllers can be integrated to the
following unified form:

ketas(ways(s) — y(s))

u(s) = ke(wpys(s) —y(s)) + %(ys(s) —y(s))+ T+ args noninteracting
(4.94)
u(s) = k. <W + L) <w>y (s)— k! <1 + L) (l+‘ch;)y(s) interacting (4.95)
\UP st \l4ats)77 ¢ st) \1+atls

146 Process Identification and PID Control

Table 4.13 MATLAB code to simulate a closed-loop control system with a noise-suppressing
PID controller.

pid_nsl.m g_pid_nsl.m
clear; function
t=0.0; t_final=25.0; [dx_dt]l=g_pid_nsl
x=[000]"; y=0.0; yb=0.0; ys=0.0; (y,x,u)
ysb=0.0; ud=0.0; A=[00-1;10-3;01-3];
delta_t=0.01;n=round(t_final/delta_t); B=[1-0.30.0]1";
C=[001]; theta=0.2; % time delay dx_dt=A*x+B*u;
h_u=zeros (1,1000); end

n_theta=round (theta/delta_t);
kc=1.5; ti=3.0; td=0.5;
s=0.0;
alpha=0.24; command window
rand (’seed’,0); noise=0.2
*(rand(1,n)-0.5);
for i=1:n >>pid_nsl
t_array(i)=t; y_array(i)=y;
ys_array (i)=ys;
if(t>1) ys=1.0; else ys=0.0; end
s=s+ (kc/ti)* (ys-y) *delta_t;
udO=kc*td* ((ys-y) - (ysb-yb)) /delta_t;
ud=ud+ (ud0-ud) *delta_t/ (alpha*td);
u=kc* (ys-y) +s+ud;
ysb=ys; yb=y; % one sampling before
u_array (i)=u;

for j=1:999
h_u(j)=h_u(j+1);
end

h_u(1000)=u;
dx_dt=g_pid_nsl(y,x,h_u(1000-n_theta));
x=x+dx_dt*delta_t; y=C*x+noise (i) ;
t=t+delta_t;

end

figure (1) ;

plot(t_array,ys_array, t_array,y_array);

legend("y_{s}(t)’","y(t)");

figure (2); plot(t_array,u_array);

u(s) = kg (wpys(s) —y(s)) +k

p)’s(s) —(s) I kgs(ways(s) = ¥(s)) parallel (4.96)

14+ atys

Also, it is straightforward to add the anti-windup techniques to the unified structure by
modifying the integral part of u;(#) to incorpoarate the conditional integration or the back
calculation.

Proportional-Integral-Derivative Control 147

1.5 T T T T

N (3]

0 5 10 15 20 25

t

Figure 4.15 Simulation result of Table 4.13.

Problems

4.1 Explain the PID controller and the tuning parameters.

4.2 The upper limit and the lower limit of the control output are 20 and 4 respectively and the
proportional gain of the PID controller is 8. Find the PB of the PID controller.

4.3 Draw the response of a PID controller for a unit step error. Explain the effects of the
tuning parameters on the response.

4.4 Simulate the step setpoint change response for the SOPTD process G(s) = exp(—0.3s)/
(s + 1)* controlled by a PID controller for which the tuning parameters are k.= 1.5,
Ti= 30, Tqa= 0.5.

(a) For a sampling time of Ar=0.01.

(b) For a sampling time of Az=0.5.

(c) For a sampling time of Az=0.01 and uniformly distributed random measurement
noise between —0.05 and 0.05.

(d) For a sampling time of Az=0.2 and uniformly distributed random measurement
noise between —0.05 and 0.05.

148

Process Identification and PID Control

4.5
4.6

4.7

4.8

4.9
4.10

Explain the roles of the three parts of a PID controller.
Find the offset for the case that the process G(s) = exp(—0.1s)(—0.2s + 1)/(s2 + 35+ 1)
controlled by the following controllers for an unit step setpoint change:

(a) P controller G.(s)=1.5 15

PI 11 =1. —
(b) controller G,(s) 54 305

(c) PD controller G.(s)=1.5 + 1.5 x0.5s
1.5
(d) PID controller G¢(s) = 1.5+ 305 +1.5%x0.5s
Find the offset for the case that the process G(s) = exp(—0.2s)/s(s + 1) controlled by the
following controllers with a unit step setpoint change:

(a) P controller G.(s)=1.0 1.0

b) PI controller G.(s) = 1.0+ —
(b) controller G.(s) +5.0s

(¢) PD controller G.(s)=1.0 + 1.0 x 0.5s

1.5
(d) PID controller G.(s) = 1.5+ 505 +1.0 x 0.5s

Find the I part (k. f(; (ys(1) — y(1)) dt /1) of aPID controller at steady state for the case that
the following processes are controlled by a PID controller with a unit step setpoint change:

(a) G(S):Sil

(b) G(S):w

(©) G(s) = 3(0.1s +(;)+(1—)§).1s+ 1)
d) G(s) = (SHE?%; 0.15)

(©) G(s):ﬁ

® Gls) = (_S+S8TZ§J 0.55)

Explain the integral windup phenomenon of a PID controller.

Simulate the closed-loop control system of which the process is G(s) = 2.0 exp(—0.3s)/
(2.552 + 5.0s + 2) and the controller is a PID controller with k., = 3.38, 7; = 2.60 and
74 =0.54. The setpoint changes from Oto 1 at # = 1.0. Also, discuss the effects of the anti-
windup techniques.

(a) No limits to the range of the control output.

(b) Umax = 1.2 and u,;, = —1.2, no anti-windup technique.

(¢) Umax = 1.2 and u,;, = —1.2, conditional integration technique.
(d) Umax=1.2 and u,;, = —1.2, back-calculation technique.

Proportional-Integral-Derivative Control 149

4.11

4.12

4.13

4.14

4.15

Find the noninteracting PID controller and the parallel PID controller equivalent to the
interacting PID controller G¢(s) = 1.5[1 + (1/10s)](1 4 2.5s).

Find the interacting PID controller and the parallel PID controller equivalent to the
noninteracting PID controller G.(s) = 1.5+ (1/10s) 4 2.5s.

Simulate the closed-loop control system of which the process is G(s) = 2.0 exp(—0.3s)/
(2.55> + 5.0s + 2.0) and the controlleris a noninteracting PID controller with k. = 3.38,
7;=2.60 and 14 =0.54. The setpoint changes from O to 1 at #=1.0. Also, discuss the
effects of the tuning parameters.

(a) Two-degree-of-freedom PID controller with w,=1.0 and wq= 1.0.
(b) Two-degree-of-freedom PID controller with w, = 1.0 and wyq = 0.0.
(c) Two-degree-of-freedom PID controller with w, = 0.7 and wyq=0.0.

Simulate Problem 4.13 with measurement noise between —0.05 and 0.05 and noise-
suppressing PID controller.

Apply the following controllers to the virtual process of Process 5 (refer to the Appendix
for details) with the scan time of 0.2 and obtain the unit step setpoint change response:

(a) Noninteracting PID controller with k.= 1.81, 1, =16.3, 14=75.90, At =0.8, t.x

&0, Umin = —°.
(b) Noninteracting PID controller with k. =1.81, 7;=16.3, 14=15.90, At =0.8, .«
2.2, Umin = 0.0.

(¢) Noninteracting PID controller with k.=1.81, 1;,=16.3, 14=5.90, Ar=0.8,
conditional integration, Uy = 2.2, Ui, = 0.0.

(d) Noninteracting PID controller with k. =1.81, 7;=16.3, 14=15.90, At =0.2, .«
9, Umin = —°°.

(e) Noninteracting PID controller with k., =1.81, 7;=16.3, 14 =5.90, At = 0.2, noise-
suppressing PID controller, u#max = o0, Umin = —o°.

Bibliography

Astrom, K.J. and Hagglund, T. (1995) PID controllers, Instrument Society of America, NC.
Seborg, D.E., Edgar, T.F. and Mellichamp, D.A. (1989) Process Dynamics and Control, John Wiley & Sons, Inc.
Stephanopoulos, G. (1984) Chemical Process Control - An Introduction to Theory and Practice, Prentice-Hall.

S

Proportional-Integral-Derivative
Controller Tuning

The tuning parameters of the PID controller should be set with in-depth consideration of the
process dynamics. Otherwise, acceptable control performances cannot be achieved. Poor
tuning parameters would result in very sluggish or unstable responses. In this chapter, simple
process identification methods are introduced to obtain the process model in the form of the
frequency response or low order plus time delay. Also, various tuning methods are discussed to
demonstrate how to estimate the tuning parameters of the PID controller on the basis of the
process model.

5.1 Trial-and-Error Tuning

Trial-and-error tuning is used to determine the tuning parameters of a PID controller by
inspecting the dynamic behavior of the controlled process output. It is very important to
understand the effects of the tuning parameters on the behavior of the process output for
successful trial-and-error tuning. The PID controller usually shows the following dynamic
behaviors with respect to the tuning parameters for the step setpoint change.

» Behavior 1. For a step setpoint change, if the process output shows a big oscillation, as shown
in Figure 5.1, then the proportional gain k. is too large. Here, the oscillation is centered on the
setpoint.

¢ Behavior 2. For a step setpoint change, if the controlled process output shows an overdamped
response, as shown in Figure 5.2, then the proportional gain k. of the PID controller is too
small.

e Behavior 3. For a positive step setpoint change, if the process output oscillates and the
process output stays above the setpoint longer than under the setpoint, as shown in Figure 5.3,
then the integral time t; is too small (that is, the integral action is too strong).

» Behavior 4. For a positive step setpoint change, if the process output oscillates and the
process output stays under the setpoint longer than above the setpoint, as shown in Figure 5.4,

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

152 Process Identification and PID Control

-
~
1

-
N
T

—_

o
2]
T

o
(o]
T

--------- process output
setpoint

Process output

o
i
T

o
N
T

Time

Figure 5.1 Typical closed-loop responses for too large a proportional gain.

1 —
’/”’
= Cd
5_ 0.8 , /7
3 V4
@ 0.6 S| m——— process output
g I/ setpoint
goar
'l
02+ ¢
!
]
0 ’ 1 1 J
0 5 10 15

Time
Figure 5.2 Typical closed-loop response for too small a proportional gain.
14 -
1ol R

1

o8l i
D] e process output

0.6 - setpoint

Process output

04 r

0.2

Time

Figure 5.3 Typical closed-loop responses for too small an integral time with a proper proportional gain
and derivative time.

Proportional-Integral-Derivative Controller Tuning 153

then the integral time t; is too large (that is, the integral action is too weak). For open-loop
stable processes, ys/k = (ke/7i) [; (vs(2) — y(t)) dt is valid if the offset is zero, where k, y,
and y denote the static gain, the step setpoint and the process output respectively. This means
that the amount of the integral part of the PID controller is fixed on ys/k at steady state. So, if
the integral amount from the starting point to the rise time is bigger than y,/k due to a small t;
value, then the integral term will be reduced to y,/k by allowing the process output to stay
above the setpoint longer than under the setpoint, as shown in Figure 5.3. If the integral
amount from the starting point to the first peak is much smaller than y,/k due to a large t;
value, then the integral term will be accumulated to y,/k by allowing the process output to
stay under the setpoint longer than above the setpoint, as shown in Figure 5.4.

e Behavior 5. For a step setpoint change, if the process output shows a high-frequency
oscillation (many peaks) from the start to the steady state, as shown in Figure 5.5, then the

1
308
5 H
° i
§ 0.6 N process output
o 3 setpoint
o
& 04r

02} i
0 : : '
0 5 10 15

Time

Figure 5.4 Typical closed-loop response for too large an integral time with a proper proportional gain
and derivative time.

12
" 1 N % R s
> s
=2 ;
3 08F !
@ H A process output
§ 06 setpoint
E 04 -
0.2 -
0 1 1 J
0 5 10 15

Time

Figure 5.5 Typical closed-loop response for too large a derivative time.

154 Process Identification and PID Control

derivative time 74 is too large. This phenomenon is due to the amplification of a high-
frequency signal by the strong derivative part.

Now, the operator can tune the PID controller in the trial-and-error manner by adjusting the
tuning parameters in the direction of removing the above-mentioned five dynamic behaviors.
The final important thing to be kept in mind for successful trial-and-error tuning is to sustain the
proportional gain as large as possible. The closed-loop dynamics tend to become slower and
slower during trial-and-error tuning if the focus is on removing the five dynamic behaviors
without trying to sustain a large proportional gain.

5.2 Simple Process Identification Methods

Because the parameters of the PID controller should be tuned on the basis of the process
dynamics, the process model should first be identified for the tuning. So, simple process
identification methods, such as the continuous-cycling method, the PRC method and the
frequency test are introduced in this section before moving to various tuning methods.

5.2.1 Continuous-Cycling Method

The continuous-cycling method is used to estimate the ultimate frequency and the ultimate gain
of the process. Consider the following control system with a proportional (P) controller.

In the continuous-cycling method, first, the P controller should be implemented as shown in
Figure 5.6. Second, the control engineer increases the controller gain and simultaneously
changes the setpoint. If the process output diverges, then the engineer reduces the controller
gain and vice versa. This procedure repeats until the process output oscillates continuously, as
shown in Figure 5.7. Then, the proportional gain of the P controller after 60 s is the ultimate gain
of the process. The ultimate period of the process is the period of the continuous-cycling.

Ys +C k. U(S)= Gls) y(9) .

Figure 5.6 Control system with a proportional controller.

The procedure of this method is simple and has been accepted by control engineers.
However, it is a trial-and-error approach, resulting in a long identification time. Also, it is
undesirable to push the control system to the marginally stable zone from the safety point of
view.

Inreal industrial plants, the engineer can usually set the upper and lower limits on the control
output, which plays an important role in preventing divergences. The continuous-cycling test
can be performed in a safer way by appropriately setting the upper and lower limits to the
control output, as shown in Figure 5.8.

As shown in Figure 5.8, the magnitude of the oscillation of the process output is limited by
setting the upper/lower limit on the control output. If the proportional gain is smaller than
the ultimate gain, then the control output converges. If the proportional gain is bigger than the

Proportional-Integral-Derivative Controller Tuning 155

0.5 T T T T T T T T

process output
04k == setpoint

03r K<k, Ko<k,

0.2

y(t).ys(t)

0.1

</ D><— >
0.2 1 1 1 1 kc|>ku kc:ku

0 10 20 30 40 50 60 70 80 90
time (s)

control output |

0.5

u(t)

_1 5 1 1 1 1 1 I 1 1 1
0 10 20 30 40 50 60 70 80 90

time (s)

Figure 5.7 Identification using the continuous-cycling method.

ultimate gain, then at least one side of the oscillation of the control output is saturated to the
upper or lower limit. Meanwhile, one side of the oscillation contacts slightly with one of the
limits (but not saturated) if the proportional gain is the same as the ultimate gain.

Let us justify why the proportional gain and the period of the continuous-cycling in
Figure 5.7 are the ultimate gain and the ultimate period respectively. In Figure 5.7, the process

156 Process Identification and PID Control

03 T T T T T T T T
process output
025k |- setpoint i
0.2 |1 i
= 0.15 i
NS
< o1 |
0.05 i
0
_005 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
time (s)
06 T T T T T T T T
control output
0.5 .I upper limit _I.l s -
e lower limit
0.4 H -

0.3 H B

U(t), Umaxs Umin
o
N
T

ot e LY T Lt

saturated
_0.2 Il Il Il Il

notI saturatled

0 10 20 30 40 50 60 70 80 920
time (s)

Figure 5.8 Continuous-cycling test with upper and lower limits on the control output.

outputis asine signal like y(#) = —c sin(w?) + dsince the input/output signals of linear systems
in continuous cycling are always sine signals. Then, the control output is u(f) = k.csin
(wt) — kd + koys from u(f) = k(ys — y(¢)). The signs of the two sine signals u(¢) and y(7)
are opposite. So, the period of continuous cycling is the ultimate period (equivalently,
/G(iw) = —m). Also, the ultimate amplitude ratio of IG(iw)| is c¢/k.c = 1/k. and the ultimate
gain is k. (equivalently, k. = 1/IG(iw)l).

Proportional-Integral-Derivative Controller Tuning 157

5.2.2 Process Reaction Curve Method and Frequency Test

The PRC method and the frequency test method were introduced in Chapter 3. They provide the
FOPTD model and the frequency response data (ultimate frequency and ultimate gain). For
details, refer to Chapter 3.

5.2.3 Advanced Process Identification Methods

Advanced process identification methods are summarized in Part Three. They can provide
complex high-order plus time-delay models and complex frequency response models. For
details, refer to Part Three.

If the process model is obtained with the process identification methods, then the parameters
of the PID controller are ready to be tuned.

5.3 Ziegler-Nichols Tuning Rule

The Ziegler—Nichols (ZN) tuning rule (Ziegler and Nichols, 1942) uses the ultimate gain and
the ultimate period of the process. Table 5.1 provides the tuning parameters of the PID
controller for the given ultimate data set of the process.

Table 5.1 ZN tuning rule.

Controller Tuning parameters”

ke T Td
P ko/2.0 — —
PI ko/2.2 pull1.2 —
PID ko/1.7 Pul2.0 Pu/8.0

“k, and p, denote the ultimate gain and the ultimate period of the process respectively.

The tuning rule is very simple and needs only the ultimate information, which can be
estimated easily by simple identification methods, such as the continuous-cycling method and
relay feedback identification method (which will be introduced in Part Three). The ZN tuning
rule shows acceptable control performances for the usual processes. However, because the ZN
tuning rule uses only the ultimate data of the process, it shows poor control performances for
underdamped or large time-delay processes, because the process has unusual frequency
response characteristics in the low-frequency region.

Example 5.1
Obtain the tuning parameters of a PID controller if the ultimate gain and the ultimate frequency
are k, = 0.2 and w, = 0.9 respectively.

Solution w,= 0.9 means that the ultimate period is p, = 21/0.9. So, the tuning parameters of
k.=0.2/1.7, 1;=m/0.9 and 74 =m/(0.9 x 4) are obtained from Table 5.1.

158 Process Identification and PID Control

Example 5.2
Obtain the tuning parameters of a PI and a PID controller for the process of which the transfer
function is G(s) = 1/(s + 1)°.

Solution The ultimate frequency and the ultimate gain can be estimated if the transfer
function of the process is given. Because G(i1.732) = 1/(i1.732 + 1)> = —0.125 + i0.000, the
ultimate frequency is w, = 1.732 (equivalently, p, =2n/1.732) and the ultimate gain is k, =
1/0.125. For the detailed descriptions, refer to Chapter 3. So, the tuning parameters of k.=
1/(0.125 x 2.2) and t; = 2m/(1.732 x 1.2) are obtained from Table 5.1 for the PI controller. In a
similar way, the tuning parameters of the PID controller can be obtained. Table 5.2 and
Figure 5.9 show the MATLAB code for the simulations and the simulation results respectively.
In Figure 5.9a, the setpoint is changed at # = 1 and a step input disturbance of magnitude equal
to 1 is entered at =1 in Figure 5.9b. Here, the step input disturbance is the step-type
disturbance added to the process input.

Table 5.2 MATLAB code to simulate a PID control system tuned by the ZN tuning rule.

zn_model_ex2.m g_zn_model_ex2.m
clear; function [G]=g_zn_model_ex2 (w)
w=0.0; delta_w=0.05; s=i*w;
while(1l) % search boundary in which wu G=1/ (s+1)"3;
exists end

w=wtdelta_w; g=g_zn_model_ex2 (w) ;
if (imag(g)>0.0) break; end

end

wl=w-delta_w; w2=w; $wl<wu<w2

while (1) % find wu using the bisection g_pid_zn_ex2.m
method function [next_x yl=g_pid_zn_ex2
w=(wl+w2)/2; (x,delt,u)
gl=g_zn_model_ex2 (wl); subdelt=delt/5;
g=g_zn_model_ex2 (w) ; n=round (delt/subdelt) ;
if (imag(g) *imag(gl)>0.0) wl=w; else | A=[00-1; 1 0-3; 01 -3];
w2=w; end B=[1; 0; 01>
if (abs(imag(g))<0.000001) break; C=[001]; delay=0.0;
end delay_k=round (delay/delt) ;
end for i=1:n
wu=w; % ultimate frequency wu is found dx=A*x+B*u (500-delay_Xk) ;
pu=2*pi/wu; x=x+dx*subdelt;
ku=1/abs (g_zn_model_ex2 (wu)) ; end
p_kcd=ku/2.0; next_x=x; y=C*x;
pi_kcd=ku/2.2; pi_tid=pu/1.2; end

pid_kcd=ku/1.7; pid_tid=pu/2.0;
pid_tdd=pu/8.0;

fprintf (' P: ked=%6.3f \n’,p_kcd) ;
fprintf (' PI: kcd=%6.3f, tid=%6.3f
\n’,pi_kcd,pi_tid);

fprintf (' PID: kcdd=%6.3f,
tid=%6.3f, tdd=%6.3f
\n’,pid_kcd,pid_tid,pid_tdd) ;

Proportional-Integral-Derivative Controller Tuning 159

Table 5.2 (Continued)

command window
>> zn_model_ex2
P: kcd=4.000
PI: kcd= 3.636, tid=3.023
PID: kcdd=4.706, tid=1.814, tdd=
0.453
>>pid_zn_ex2

pid_zn_ex2.m

kc=pid_kcd; ti=pid_tid; td=pid_tdd;
t=0.0; t_final=15.0;
x=[000]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; dis=0.0;
delta_t=0.02; n=round (t_final/delta_t);
h_u=zeros(1,500); s=0.0;
for i=1:n

t_array(i)=t; y_array(i)=y; ys_array(i)=ys;

if(t>1) ys=1.0; else ys=0.0; end % setpoint change simulation
$ 1f(t>1) dis=1.0; else dis=0.0; end % disturbance rection
simulation

s=s+ (kc/ti) * (ys-y) *delta_t;

u=kc* (ys-y)+s+kc*td* ((ys-y) - (ysb-yb)) /delta_t;

ysb=ys; yb=y; % one sampling before

u_array(i)=u;

for j=1:499

h_u(j)=h_u(j+1);

end

h u(500)=u+dis;

[x y]l=g_pid_zn_ex2(x,delta_t,h_u);

t=t+delta_t;
end
figure (1) ; plot(t_array,ys_array, t_array,y_array); legend(’'y_{s}
(v, 'y(e)y");
figure (2); plot(t_array,u_array);

5.4 Internal Model Control Tuning Rule

The objective of the internal model control (IMC) tuning rule (Morari and Zafiriou, 1989) is to
match the control performance of the PID controller with that of the IMC controller. It needs the
following FOPTD model:

_ kexp(— 0s)
s+
where k, T and 6 denote the static gain, the time constant and the time delay respectively. The
FOPTD model can approximate the usual overdamped processes. The model can be obtained
by various process identification methods. Refer to Section 5.2 for the detailed descriptions.

The IMC tuning rule determines the tuning parameters using the formulas in Table 5.3, where
2.>0.250 for the PID controller and A > 1.76 for the PI controller. If a smaller value of 1 is

G (s) (5.1)

160

Process Identification and PID Control

1.5

Ys(t)
weemenens (1)

05}

0.2

0.1}F

0.05 |

15

Ys(t)
sememees (1)

—-0.05 L
0

15

Figure 5.9 Control performances of a PID controller designed by the ZN tuning rule: (a) setpoint

change; (b) disturbance rejection.

Table 5.3 IMC tuning rule.

Controller Tuning parameters
kk. T T4
PI 2t + 0)/24 T+ 60/2 —
PID 2t + 6)/2(4 + 0) T+ 602 70/(2t + 0)

Proportional-Integral-Derivative Controller Tuning 161

chosen, then a faster closed-loop response is obtained. However, too small a 4 value results in an
oscillatory or unstable closed-loop response. If the model (5.1) is accurate, then the tuning
parameters with 1 = 0.2560 show good control performances and robustness for the step setpoint
change.

The IMC tuning rule shows excellent control performances for a step setpoint change.
Meanwhile, it shows sluggish control performances for step input disturbance rejection. Here,
the step input disturbance is the step-type disturbance added to the process input.

The FOPTD model has a structural limitation in representing underdamped or high-order
processes. Thus, the IMC tuning rule based on the FOPTD model shows poor control
performances for unusual processes, such as underdamped or high-order processes.

Example 5.3

Obtain the tuning parameters of a PID controller for the process of which the transfer function is
G(s) = 1.5exp(—0.35)/(1.2s + 1) using the IMC tuning rule. And simulate the closed-loop
response for the step setpoint change and the step input disturbance rejection.

Solution 12=0.25x0.3 is chosen and then the tuning parameters k.= (2 x 1.2 4+ 0.3)/
[2(0.25x 0.3 + 0.3) x 1.5],7;=1.2 + 0.3/2and 74 = (1.2 X 0.3)/(2 x 1.2 4 0.3) are obtained
from Table 5.3. Table 5.4 and Figure 5.10 are the MATLAB code for the simulation and the
simulation results. The step setpoint is changed at =1 in Figure 5.10a and the step input
disturbance of magnitude equal to 1 enters at =1 in Figure 5.10b. It is clear that the control
action for the step input disturbance rejection is more sluggish than that for the step setpoint
change.

5.5 Integral of the Time-Weighted Absolute Value of the Error Tuning
Rule for a First-Order Plus Time-Delay Model (ITAE-1)

The integral of the time-weighted absolute value of the error tuning rule for an FOPTD model
(ITAE-1) tuning rule provides the tuning parameters minimizing the following integral of the
time-weighted absolute value of the error (ITAE).

oo

ITAE = J tlys(¢) — y(2)| dt (5.2)
0

Lopez et al. (1967) provides the equations in Table 5.5 to approximate the optimal tuning

parameters minimizing (5.2).

The parameters tuned by the ITAE-1-disturbance method for the step input disturbance
rejection are almost the same as the optimal tuning parameters. But the ITAE-1 setpoint shows a
sluggish control action compared with that of the optimal tuning parameters for the step
setpoint change.

Example 5.4

Obtain the tuning parameters of a PID controller for the process of which the transfer function is
G(s)=1.5exp(—0.35)/(1.2s + 1) using the ITAE-1 tuning rule. Also, simulate the closed-loop
response for the step setpoint change and the step input disturbance rejection.

162 Process Identification and PID Control

Table 5.4 MATLAB code to simulate a PID control system tuned by the IMC tuning rule.

imc_tune_exl.m g_pid_imc_exl.m
clear; function [next_x y]=g_pid_imc_ex1l
k=1.5; t=1.2; th=0.3; (x,delt,u)
subdelt=delt/5;
r=1.7*th; n=round (delt/subdelt) ;
pi_kcs=(2*t+th)/2/x/k; A=[-1.0/1.2]1; B=[1.5/1.2]; C=[1];
pi_tis=t+th/2; delay=0.3;
delay_k=round (delay/delt) ;
r=0.25*th; for i=1:n
pid_kcs=(2*t+th)/2/ (r+th) /k; dx=A*x+B*u (500-delay_k) ;
pid_tis=t+th/2; x=x+dx*subdelt;
pid_tds=t*th/ (2*t+th); end
fprintf (" PI: kcs=%6.3f, tis=%6.3f next_x=x; y=C*x;
\n’,pi_kcs,pi_tis); end
fprintf (' PID: kcds=%6.3f, command window
tis=%6.3f, tds=%6.3f \n’,pid_kcs, >> imc_tune_exl
pid_tis,pid_tds); PI: kcs=1.765, tis=1.350
PID: kcds=2.400, tis=1.350,
tds=0.133
>>pid_imc_exl

pid_imc_exl.m
kc=pid_kcs; ti=pid_tis; td=pid_tds;
t=0.0; t_final=10.0; x=[01]1"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; dis=0.0;
delta_t=0.02; n=round (t_final/delta_t); h_u=zeros(1,500); s=0.0;
for i=1:n
t_array(i)=t; y_array(i)=y; ys_array(i)=ys;
if(t>1) ys=1.0; else ys=0.0; end % setpoint change simulation
%S 1f(t>1) dis=1.0; else dis=0.0; end % disturbance rection
simulation s=s+(kc/ti)* (ys-y) *delta_t;
u=kc* (ys-y)+s+kc*td* ((ys-y) - (ysb-yb)) /delta_t;
ysb=ys; yb=y; % one sampling before
u_array (i)=u;
for §=1:499 h_u(j)=h_u(j+1); end
h_u(500)=u+dis; [xy]l=g_pid_imc_exl (x,delta_t,h_u);
t=t+delta_t;
end
figure (3) ; plot(t_array,ys_array, t_array,y_array);
legend('y_{s}(t)’,"y(t)");
figure (2); plot(t_array,u_array);

Solution k,=2.090, 7;=1.580 and 74 =0.102 for the step setpoint change and k. = 3.362,
7;=0.512 and 74 = 0.115 for the step input disturbance are obtained from Table 5.5. Table 5.6
and Figure 5.11 show the MATLAB code and the simulation results respectively. The step
setpointis changed at # = 1 in Figure 5.11a and the step input disturbance of magnitude equal to
1 enters at # =1 in Figure 5.11b. The step input disturbance is a step-type disturbance added to

Proportional-Integral-Derivative Controller Tuning

163

1.4

1.2

1

0.8

0.6

0.4

0.2

0.4

0.3

0.2

0.1

; Ys(t)
s-':.‘. aa@mmnn y(t)
2 4 6 8 10
t
(a)
Ys(t)
[y y(t) _
KN 4
I I I I
2 4 6 8 10
t
(b)

Figure 5.10 Control performances of a PID controller designed by the IMC tuning rule: (a) setpoint
change; (b) disturbance rejection.

Table 5.5 ITAE-1 tuning rule for an FOPTD model.
Controller Tuning parameters

kk. T/t T4/T
Pl-setpoint 0.586(6/7)1° 1.030—0.165(6/7) —
PID-setpoint 0.965(6/7) 0850 0.796—0.1465(6/7) 0.308(0/7)*%°

PI-disturbance
PID-disturbance

0.859(6/7)~ %77
1.357(0/7) %%

0.674(0/7) 0680
0.842(0/7) 0738

0.381(0/7)%%°

164 Process Identification and PID Control

Table 5.6 MATLAB code to simulate a PID control system tuned by the ITAE-1 tuning rule.

itael_tune_exl.m
clear;
k=1.5; t=1.2; th=0.3;
pi_kcs=0.586* (th/t)”~(-0.916)/k; pi_tis=t/(1.030-0.165*th/t);
pid_kcs=0.965* (th/t) " (-0.850) /k; pid_tis=t/(0.796-0.1465*th/t);
pid_tds=t*0.308* (th/t)"~0.929;
pi_kcd=0.859* (th/t)”~(-0.977)/k; pi_tid=t/ (0.674* (th/t)" (-0.680));
pid_kcd=1.357* (th/t) " (-0.947) /k; pid_tid=t/(0.842* (th/t)"~(-0.738));
pid_tdd=t*0.381* (th/t)~0.995;
fprintf (' PI-setpoint: kcs=%6.3f, tis=%6.3f \n’,pi_kcs,pi_tis);
fprintf (' PID-setpoint: kcds=%6.3f, tis=%6.3f, tds=%6.3f \n’,pid_kcs,
pid_tis,pid_tds);
fprintf (' PI-disturbance: kcd=%6.3f, tid=%6.3f \n’,pi_kcd,pi_tid);
fprintf (' PID-disturbance: kcdd=%6.3f, tid=%6.3f, tdd=%6.3f
\n’, pid_kecd, pid_tid, pid_tdd) ;

pid_itael_exl.m

kc=pid_kcs; ti=pid_tis; td=pid_tds; % setpoint change simulation
$kc=pid_kcd; ti=pid_tid; td=pid_tdd; % disturbance rection simulation
t=0.0; t_final=10.0; x=[0]’; y=0.0; yb=0.0; ys=0.0; ysb=0.0; dis=0.0;
delta_t=0.02; n=round (t_final/delta_t); h_u=zeros(1,500); s=0.0;
for i=1:n

t_array(i)=t; y_array(i)=y; ys_array(i)=ys;

if(t>1) ys=1.0; else ys=0.0; end % setpoint change simulation
% 1f(t>1) dis=1.0; else dis=0.0; end % disturbance rection
simulation

s=s+ (kc/ti) * (ys-y) *delta_t;

u=kc* (ys-y)+s+kc*td* ((ys-y) - (ysb-yb)) /delta_t;

ysb=ys; yb=y; % one sampling before

u_array (i)=u;

for j=1:499 h_u(j)=h_u(j+1); end

h_u(500)=u+dis; [xyl=g_pid_itael_exl(x,delta_t,h_u);

t=t+delta_t;
end
figure (1) ; hold on; plot(t_array,ys_array,t_array,y_array);
legend ("y_{s} (L)', y(t)");
figure (2); plot(t_array,u_array);

g_pid_itael_exl.m
function [next_xy] =
g_pid_itael_exl (x,delt,u)
subdelt=delt/5;
n=round (delt/subdelt) ;

A=[-1.0/1.2]; B=[1.5/1.2]; C=[1];

delay=0.3;
delay_k=round (delay/delt) ;
for i=1:n
dx=A*x+B*u (500-delay_Xk) ;
x=x+dx*subdelt;
end

command window

>> itael_tune_exl1
PI-setpoint: kecs=1.391,
tis=1.214

PID-setpoint: kcds=2.090,
tis=1.580, tds=0.102
PI-disturbance: kcd=2.219,
tid=0.694

PID-disturbance: kcdd= 3.362,

tid=0.512, tdd=0.115

Proportional-Integral-Derivative Controller Tuning 165

1
3 yslt)
15l , | --------- y(t)-ITAE1-setpoint 4
i' : ——— y(t)-ITAE1-disturbance
i
1+ .’l 'wl‘ s{.\.' ek
v
T
i
05F i |
f
!
!
0 S , . :
0 P 4 6 8 10
t
(a)
0.6 - - ' '
05k —_— ys(t) T
0al R y(t)-ITAE1-setpoint i
. i - y(t)-ITAE1-disturbance
LS
03} iis |
1! .
0.2} R |
Pt
0.1f A N W |
' ‘l e ALY “-ve
P (R
0 Vi
s
0.1 : , . :
0 P 4 6 8 10
t
(b)

Figure 5.11 Control performances of a PID controller designed by the ITAE-1 tuning rule: (a) setpoint
change; (b) disturbance rejection.

the process input. The dynamic behaviors of the step input disturbance and the step output
disturbance are totally different. Usually, the PID controller tuned for the step input disturbance
shows more aggressive control action compared with the PID controller tuned for the step
setpoint change. So, the ITAE-1-setpoint shows a too sluggish control action for the step input
disturbance and the ITAE-1-disturbance shows a too aggressive control action for the step
setpoint change.

Figure 5.12 compares the control performances of the tuning rules for the FOPTD model.
Here, the process is G(s) = 1.5exp(—0.3s)/(1.2s + 1). As shown in Figure 5.12, the IMC
tuning rule and the ITAE-1-disturbance show superior control performances for the setpoint
change and the step input disturbance rejection problems respectively. Contrarily, the IMC
tuning rule shows a sluggish response for the step input disturbance. Also, the ZN tuning rule

166

Process Identification and PID Control

T I T T T
15} ! ’
l"“\
1 \
I, \
RSN N,
1r ";.,'" :,‘. ,.\-\
.
K
’l::',' ys(t)
o5l :"/’ y(t)-IMC i
N T Tt y(t)-ZN
| ——— y(t)-ITAE1-setpoint
1
0 I : . '
0 1 2 3 4 >
t
(a)
0.4 T T T T T ! !
i ys(t)
03l ,’ [P y(t)-IMC i
’ : "“ _____ J/(t)'ZN
ool ,, [——— y(t)-ITAE1-disturbance|
i
1o
01} [i - |
] [y *
’ [N T
27 . R L T T T
0 ' l\ Ao
\
v/
-0.1 - . . - - ' '
0 1 2 3 4 5 6 7 8

(b)

Figure 5.12 Control performances of PID controllers tuned by ZN, ITAE-1 and IMC tuning rules:
(a) step setpoint change; (b) step input disturbance rejection.

shows a poor control performance for the step setpoint change. The IMC tuning rule is
recommended to tune the PID controller for the step setpoint change problem and the ITAE-1-
disturbance is recommended for the step input disturbance rejection problem.

5.6 Integral of the Time-Weighted Absolute Value of the Error Tuning
Rule for a Second-Order Plus Time-Delay Model (ITAE-2)
The SOPTD model of (5.3) can describe the dynamics of high-order or underdamped processes

with fairly good accuracy. So, it is clear that the tuning rules on the basis of the SOPTD model
are potentially much better than those on the basis of the FOPTD model.

Proportional-Integral-Derivative Controller Tuning 167

kexp(— 6s

Gm(s) = 1252 +p(21§s42 1 (53)
Sung et al. (1996) proposed the ITAE-2 tuning rule for an SOPTD model. They obtained the
optimal tuning parameters by solving the optimization problems of (5.2) for the extensive cases
of the SOPTD model. And they fitted the optimal data sets obtained as shown in Table 5.7.
ITAE-2 is applicable to all the cases of 0.3 < <5.0 and 0.05 <60/t <2.0. ITAE-2 provides
almost the same control performances as those of the optimal tuning for both the step setpoint

change and the step input disturbance rejection problems.

Table 5.7 ITAE-2 tuning rule for an SOPTD model.

ITAE-2-setpoint kk. = —0.04 4+

e = —

~0.983
0.333+0.949(;) }{, <09

T T

i 0 0
i {2.055 +0.072 (7)}5, 7<10
T T T

H_ {1.768+0.329(§) }g, %10
T T T

T (0/1_)1.060§ 0\ ~ 1.090
—=<1.0-— - 0.55+1.683(—
rd { exp [0.870 + T

~2.001 ~0.766 0
ITAE-2-disturbance kk. = —0.670+0.297 (—) +2.189 (—) {, —-<0.9
T T T

0 o —0.832
kk. = —0.544+0.308() + 1.408() £, £>09

0 2 ~0.766
kk. = —0.365+0.260 (; - 1.400) +2.189 (;) Z, . >0.9

Ti

0.520 9
—= 2.212(—) —0.300, -<04
T T T

Ti

0 ’ d
S_ _097 910(- —1.84 1= ~0.150 +0.330(6/7)
0.975+0.9 0(‘5 8 5) +{ “'Xp{ o.150+0,330(9/r)”

(~|

) 2 0
x 5250 —0.880(~ —2.800) |, ~->04
T T

. g\ — 0530 ¢
—= —1.900+1.576 (7) +ql—exp|— 1121
74 T —0.1540.939(0/7)

g\ ~ 17!
X 1.45+0.969(—) }

T

168 Process Identification and PID Control

Example 5.5
Obtain the tuning parameters of a PID controller for the process of which the transfer function is
G(s)=1.5 eXp(—0.3S)/(2.SS2 + 5.0s + 2) using the ITAE-2 tuning rule.

Solution Because G(s)=1.5 exp(fO.S’s)/(Z.Ss2 + 5.0s + 2)isequivalent to G(s) =0.75 exp
(—0.35)/(1.118%s* + 2 x 1.118 x 1.118s + 1), k. =5.656, 1;=2.593 and 4= 0.538 for the
step setpoint change and k.= 13.55, 1;=0.912 and 74 = 0.409 for the step input disturbance
change are obtained from Table 5.8. Figure 5.13 shows the control performances of the ITAE-2-
setpoint and ITAE-2-disturbance.

Table 5.8 MATLAB code to simulate a PID control system tuned by the ITAE-2 tuning rule.

itae2_tune_exl.m
k=0.75; £t=1.118; d=1.118; th=0.3;
% static gain, time constant, dampling factor, time delay
if (d<=0.9)
kcs=(-0.04+(0.333+0.949* (th/t) " (-0.983)) *d) /k;
else
kcs=(-0.544+0.308*th/t+1.408* (th/t)" (-0.832)*d) /k;
end
if((th/t)<=1.0)
tis=(2.055+0.072*th/t) *d*t;
else
tis=(1.768+0.329*th/t)*d*t;
end
tds=t/(1.0-exp (- (th/t)~(1.060)*d/0.870))/(0.55+1.683* (th/t)"
(-1.090))
if ((th/t)<0.9)
kcd=(-0.670+0.297* (th/t) "~ (-2.001)+2.189* (th/t) "~ (-0.766) *d) /k;
else
kcd=(-0.365+0.260* (th/t-1.400)"2+2.189* (th/t) "~ (-0.766) *d) /k;
end
if((th/t)<0.4)
tid=(2.212* (th/t)"(0.520)-0.300) *t;
else
tid=(-0.975+0.910* (th/t-1.845) "2+ (1l-exp (-d/ (0.150+0.330*th/t))) *
(5.25-0.88*(th/t-2.8)"2)) *t;

end
tdd=t/(-1.9+41.576* (th/t)”"(-0.53)+ (1l-exp (-d/ (-0.15+0.939* (th/t)"
(=1.121))))*(1.45+0.969* (th/t) "~ (-1.171)));

fprintf (' kcs=%6.3f, tis=%6.3f, tds=%6.3f \n’, kcs, tis, tds);
fprintf (' ked=%6.3f, tid=%6.3f, tdd=%6.3f \n’, kcd, tid, tdd) ;

pid_itae2_exl.m g_pid_itae2_exl.m
kc=kcs; ti=tis; td=tds; function [next_xvy] =
$kc=kcd; ti=tid+0.05; td=tdd; g_pid_itae2_exl (x,delt,u)
t=0.0; t_final=15.0; subdelt=delt/5;

x=[00]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; n=round (delt/subdelt) ;

Proportional-Integral-Derivative Controller Tuning 169

Table 5.8 (Continued)

dis=0.0; A=[0-2/2.5;1-5/2.51;

delta_t=0.02; n=round (t_final/delta_t); B=[1.5/2.5; 0];

h_u=zeros (1,500); s=0.0; C=[01]; delay=0.3;

for i=1:n delay_k=round(delay/delt) ;
t_array(i)=t; y_array(i)=y; ys_array for i=1:n

(1)=ys; dx=A*x+B*u (500-de-

% setpoint change simulation lay_k);
if(t>1l) ys=1.0; else ys=0.0; end x=x+dx*subdelt;

% disturbance rection simulation end

% 1f(t>1) dis=1.0; else dis=0.0; end next_x=x; y=C*x;
s=s+(kc/ti)* (ys-y) *delta_t; end

u=kc* (ys-y) +stkc*td* ((ys-y) - (ysb-
yb)) /delta_t;

ysb=ys; yb=y; % one sampling before command window
u_array(i)=u; >> itae2_tune_exl
for 3=1:499 kcs=5.656, tis=2.593, tds=
h_u(j)=h_u(j+1); 0.538
end kcd=13.552, tid=0.912, tdd=
h_u(500)=u+dis; 0.409
[x y]=g_pid_itae2_exl (x,delta_t, >>pid_itae2_exl
h_u);
t=t+delta_t;
end

figure (3) ;

plot(t_array,ys_array, t_array, y_ar-
ray):

legend ("y_{s} (t)’,"y(t)") ;figure (2);
plot(t_array,u_array);

5.7 Optimal Gain Margin Tuning Rule for an Unstable Second-Order
Plus Time-Delay Model (OGM-unstable)

A PID controller has a structural limitation in controlling an unstable process. Thus, a PID
controller with an internal feedback loop of the PD controller is recommended, as shown in
Figure 5.14. For details, refer to the Section 5.8 and Chapter 7.
In this section, the optimal gain margin tuning rule for the PD controller G.(s) = k;(1 + t4;8)
is introduced for the following unstable SOPTD model:
kexp(— 6s)
Gp(s) = ———— 5.4
O = B DEwt 1) (5:4)
Kwak et al. (2000) obtained the optimal tuning parameters for extensive cases of the
unstable SOPTD model. And they fitted the optimal data sets obtained as shown in Table 5.9.
The OGM-unstable tuning rule is applicable to all the cases of 0<0< 1 — 14

170 Process Identification and PID Control

0.8}]
JAL)
0.6 H]
:- - y(t)
04f .

0.2f i

0.1 T T T T

0.08 |) -
. Ys(t)

0.06 . ‘- N (3] |

0.04 | P _

0.02f -

-0.02 ! ! ! !
0

(b)

Figure 5.13 Control performances of PID controllers tuned by the ITAE-2 tuning rule: (a) step setpoint
change tracking; (b) step input disturbance rejection.

Example 5.6
Obtain the tuning parameters of a PD controller for the process of which the transfer function is
G(s)=1.0exp(—0.25)/(3.0s — 1)(s + 1) using the OGM-unstable tuning rule.

Solution k.=7.162 and t4=0.300 are obtained from Table 5.10. Figure 5.15 shows the
control performances of the OGM-unstable tuning rule.

5.8 Model Reduction Method for Proportional-Integral-Derivative
Controller Tuning

If the model is given in the form of a high-order plus time-delay model or frequency response
data, then most PID tuning rules cannot be used. In this case, the high-order model or the

Proportional-Integral-Derivative Controller Tuning 171

¥(s) + u(s) + y(s)
_— PID(s) G(s) >

\

k|(1 +TdiS) <+

Figure 5.14 PID control combined with an internal feedback loop to control an unstable process.

Table 5.9 OGM-unstable tuning rule for an unstable SOPTD model.

Controller Tuning parameters
ki ‘Cdi/‘L'
1
P .
|G (iwu)||Gm (0)]
PD 1 - 0 6\>
ki = . . M X X () +x(2
VIGuliwn) (1t it [[Gn(0) = 1 T2\ 753
Ts 75\ 2 Ts\ 3
X, = 70.003+0.6482<—> 72.284l<—) +2.6221(—>
T T T
4
70.9611<E>
T

X, = 0.2446 — 1.0410(%) +13.6723 (%)2 ~16.7622 (%)}
1£5.1471 (5)4
T
X3 = 0.1685 +0.8289 (T;) - 9.3630(%)2 +2.9855 (%)2

Ts\ 4
+7.3803 (7)
T

frequency response data should be reduced to the FOPTD model or the SOPTD model (Sung
and Lee, 1996). In this section, the model reduction method for the stable process is discussed,
followed by modifications to consider the effects of the zeroes and the reduction method for the
unstable process.

5.8.1 Model Reduction for Stable Processes

Assume the use of a high-order model for which the transfer function is Gjgn(s) and there is a
need to reduce it to the SOPTD model:

kexp(— 6
Grign(5) = exp(— 0s)

>~ 5.5
1252 +2tés + 1 (55)

The model reduction method fits the SOPTD model to the frequency responses of the high-
order plus time-delay model. It first estimates the gain of the reduced model to fit the zero
frequency response data as follows:

k = Ghign(0) (5.6)

172 Process Identification and PID Control

Table 5.10 MATLAB code to simulate a PID control system tuned by the OGM-unstable tuning rule.

OGM_unstable_tune_exl.m
clear;
k=1.0; t=3.0; ts=1.0; th=0.2; $staticgain, time constant (unstable), time
constant (stable), time delay
w=0.0; delta_w=0.05;
while (1) % search boundary in which wu exists
w=w+delta_w; g=g_OGM_unstable_exl (w,0);
if (imag(g)>0.0) break; end
end
wl=w-delta_w; w2=w; $ w l<wu< w2
while (1) % find wu using the bisection method
w=(wl+w2) /2; gl=g_OGM_unstable_exl (wl,0); g=g_OGM_unstable_ex1 (w,0) ;
if (imag(g) *imag(gl)>0.0) wl=w; else w2=w; end
if (abs(imag(g))<0.00000001) break; end
end
wu=w; % ultimate frequency wu is found
gu=g_OGM_unstable_exl (wu,0) ;
P_ki=1/sqrt (abs(gu) *abs (k)) ;
% tuning parameter for P controller

X1=-0.00340.6482* (ts/t)-2.2841* (ts/t)"24+42.6221* (ts/t)"3-0.9611
*(ts/t)"4;

X2=0.2446-1.0410* (ts/t)+13.6723* (ts/t)"2-16.7622* (ts/t)"3+5.1471~*

(ts/t)"4;

X3=0.1685+0.8289* (ts/t)-9.3630* (ts/t)"2+2.9855* (ts/t)"3+7.3803
*(ts/t) "4,

PD_tdi=t* (X1+X2* (th/t)+X3* (th/t)"*2); % td for PD controller

w=0.0; delta_w=0.05;
while(l) % search boundary in which wu exists
w=w+delta_w; g=g_OGM_unstable_exl (w,PD_tdi) ;
if (imag(g)>0.0) break; end
end
wl=w-delta_w; w2=w; % w l<wu < w2
while (1) % find wu using the bisection method
w=(wl+w2) /2; gl=g_OGM_unstable_exl (wl,PD_tdi); g=g_OGM_unstable_exl
(w, PD_tdi);
if (imag(g) *imag(gl)>0.0) wl=w; else w2=w; end
if (abs (imag(g))<0.00000001) break; end
end
wu=w; % ultimate frequency wu is found
gu=g_OGM_unstable_exl (wu,PD_tdi);
g0=g_OGM_unstable_ex1 (0,PD_tdi) ;
PD_ki=1/sqgrt (abs (gu) *abs (g0)); % ki for PD controller

fprintf (' P: P_ki=%6.3f \n’,P_ki);
fprintf (' PD: PD_ki=%6.3f, PD_tdi=%6.3f \n’,PD_ki,PD_tdi);

Proportional-Integral-Derivative Controller Tuning

173

Table 5.10 (Continued)

pid_OGM_unstable_exl.m
% OGM_unstable tuning parameters
kc=PD_ki; td=PD_tdi;
% OGM_unstable tuning parameters
$kc=P_ki; td=0;
t=0.0; t_final=10.0;
x=[00]"; yv=0.0; yb=0.0; ys=0.0;
ysb=0.0; dis=0.0;
delta_t=0.01; n=round (t_final/del-
ta_t);
h_u=zeros (1,500);
for i=1:n
t_array(i)=t; y_array(i)=y;
ys_array (i)=ys;
% setpoint change simulation
if(t>1) ys=1.0; else ys=0.0; end
% disturbance rection simulation
% 1f(t>1) dis=1.0; else dis=0.0;
end
u=kc* (ys-y) tkc*td* ((ys-y) - (ysb-
yb)) /delta_t;
ysb=ys; yb=y; $one samplingbefore
u_array(i)=u;

for j=1:499
h_u(j)=h_u(j+1);
end

h u(500)=u+dis;

[x y]=g_pid_OGM_unstable_exl (x,
delta_t,h_u);

t=t+delta_t;
end
figure (3) ;
plot(t_array,ys_array, t_array,
y_array);
legend("y_{s}(t)’,"y(t)");
figure (2); plot(t_array,u_array);

g_OGM_unstable_exl.m
function [G]=g_OGM_unstable_exl
(w, tdi)
s=1i*w;
G=exp (-0.2*s)* (1+tdi*s)/ (3*s-1)/
(s+1);
end

g_pid_OGM_unstable_exl.m

function [next_xy] =
g_pid_OGM_unstable_exl (x,delt,u)
subdelt=delt/5;
n=round (delt/subdelt) ;
A=[01.0/3.0;1.0-2.0/3.01;
B=[2.0/3.0; 0]; C=[011];
delay=0.1;
delay_k=round(delay/delt) ;
for i=1:n

dx=A*x+B*u (500-delay_k);

x=x+dx*subdelt;
end
next_x=x; y=C*x;
end

command window
>> OGM_unstable_tune_exl
P: P_ki=3.193
PD: PD_ki="7.162, PD_tdi= 0.300
>>pid_OGM_unstable_exl

Itthen estimates t and & to satisfy the equality of (5.7) by solving (5.8) using the least-squares
method. Equation (5.8) is derived from (5.7) in a straightforward manner.

|Ghign (iw)] ~

kexp(—ifw) ‘ B k (57)
20+ = :
1 —120? + 127w \/(1 _ 20?4 (21lw)?
| Ghign (i0)) P + (47°€ — 20)|Grign (i) "] = k* — |Grign (i) (5.8)
O<wi<wr< - <w;j< - <wy (5.9)

174 Process Identification and PID Control

1.5
O T e N stttstutssstts
H ys(t)
05+ R (3] i
0 1 1 1 1
0 2 4 6 8 10

Figure 5.15 Control performances of a PD controller tuned by the OGM-unstable tuning rule.

where it is recommended to choose w,, as the ultimate frequency w, of the process. If w, is not

available, then w,, should be chosen as the closest one to w,. The model reduction method

finally estimates the time delay of the SOPTD model from the following phase-angle

equation (5.10) with respect to w,,. Equation (5.11) is directly obtained from (5.10).
kexp(— 10wy,)

/Ghign (i) = / = 20l + Deon =0(wn) = — Oy, +arctan2(— 2wy, | — 02 1°)

(5.10)

— O(wm) +arctan2(— 2éton, 1 — w?t?)

Wm

0:

(5.11)

where arctan 2(Im, Re) returns the phase angle of the complex number of Re + iIlm. It
returns ¢ ranged from —m to 7t while arctan(Im/Re) returns ¢ ranged from —m/2 to /2. p(w.,) is
the phase angle of Gpjgn(s) at @, @y, should be wy, < w,,. It is recommended to choose wyy, as a
frequency close to the ultimate frequency w, of the process. If w,,, = w, is chosen, then (5.10)
and (5.11) become the following equations:

— 1= — fw, +arctan2(— 2¢w, 7, | — w2t?) (5.12)

g + arctan2 (— 2€twy, 1 — w,27?)
= o
In summary, the reduced SOPTD model of (5.5) can be estimated from (5.6), (5.8),
and (5.11). The same approach of (5.6), (5.8), and (5.11) can also be applied to the case that
the frequency response data are available instead of the transfer function.
Similarly, (5.14)—(5.16) can be derived to reduce the high-order model to the FOPTD model.

(5.13)

k = Ghign(0) (5.14)

_ R~ [Guanlioom)

T= .
|Ghigh (i®wm) |0m

(5.15)

Proportional-Integral-Derivative Controller Tuning 175

— 0(wn) + arctan(— twy,)

Wm

6= (5.16)

5.8.2 Modification to Consider Effects of Zeroes

The above-mentioned model reduction method to obtain the reduced SOPTD model
shows good performances if Gyign(s) has no zeroes or the magnitudes of the zeroes are
large enough. It should be noted that the reduced SOPTD model (5.5) has no zeroes, so that it
has a structural limitation in fitting the effects of the zeroes of Gpign(s). If Gpign(s) has
some zeroes of which the magnitudes are small, then the least-squares method using (5.7)—(5.9)
may provide the wrong parameters 7 and &. This is because the least-squares method tries to fit
the effects of the zeroes of Gy;gn(s) by adjusting the poles (equivalently t and &) of the
reduced SOPTD model. Sometimes, even though the high-order model is stable, the reduced
model obtained could be unstable because the dominant zeroes of the high-order model can
affect the pole positions of the reduced model. So, a modification is required to prevent
the model reduction method from adjusting the poles of the reduced model to fit the zeroes
of Ghign(s).

The following modification using the equivalent time-delay concept is recommended.
Consider the following zeroes part of Gp;gn(s):

(—z; s+ D)=z s+ 1) (=2 s+ D) == (27 Pz Tz s (5.17)
The equivalent time delay can be represented by the Taylor series expansion:
exp (_ Hequivalenls) =1- Oequivalenls + - (5 18)

From the comparison of (5.17) and (5.18) up to the second term, the following equivalent
time delay is defined to approximate the zeroes of Gpigh(s):

eequivalem = 2171 +Z£1 + - '2,71 (519)

In summary, after removing the dominant stable and unstable zeroes of Gpigh(s) and
rearranging Gpigh(s) to the modified high-order plus time-delay model of Ghigh modified(S)
which has the equivalent time delay instead of the zeroes, the model reduction can be continued
with Ghigh modifiea(s). If @ more conservative approach is preferred, then it is recommended to
consider only unstable zeroes to estimate the equivalent time delay and just neglect the stable
zeroes because the unstable zeroes lag the phase angle and the stable zeroes lead the phase
angle.

5.8.3 Model Reduction for Unstable Processes

In the same way, the model reduction method can be applied to an unstable process. Assume
that the requirement is to reduce the unstable high-order process to the following unstable
SOPTD model:

176 Process Identification and PID Control

kexp(— 0s)

Gn(5) = (ts—1)(zss+ 1)

(5.20)

First, estimate the gain of the reduced model to fit the zero frequency response data as
follows:

k = Grigh(0) (5.21)

And the model reduction method estimates 7 and 7, to satisfy the equality (5.22) by
solving (5.23) using the least-squares method. Equation (5.23) is derived from (5.22) in a
straightforward manner.

k
Ghieh (iw)| = |G (iw)| = 5.22
|Grigh(iw)| = |G (io)| N (=) (5.22)
(7 +72)|Ghign (1)) @] + 7222 Ghign (i) @] = & — | Gign (i) (5.23)
O<wi<wr< -+ <wj< - <wy, (5.24)

where it is recommended to choose w, as the ultimate frequency w, of the process. If
w, is not available, then w, should be chosen as the closest one to w,. The model
reduction method finally estimates the time delay of the SOPTD model from the
following phase-angle equation (5.25) with respect to w,,. Equation (5.26) is obtained directly
from (5.25).

LGhigh(i0m) = (G (iom)=>P(wn) = — T — Owy, + arctan(twy,) — arctan(t,wn) (5.25)

— ¢(wm) — T+ arctan(twy,) — arctan(tswn)

0= (5.26)

Wm

where ¢(wn,) is the phase angle of Gpigh(s) at wy,. 0y, should be wy, < w,,. Itis recommended to
choose wy, as a frequency close to the ultimate frequency w, of the process. If w, =w, is
chosen, then (5.25) and (5.26) become the following equations:

— T = — T — fw, + arctan(tw,) — arctan(Tswy) (5.27)

0 arctan(tw,) — arctan(t,wy) (5.28)

Wy

In summary, the reduced unstable SOPTD model (5.20) can be estimated from (5.21), (5.23)
and (5.26).

Example 5.7
Obtain the tuning parameters of a PID controller for the process of which the transfer function is
Ghign(s) =exp(—0.1s)/(s + 1)3 using the IMC tuning rule.

Proportional-Integral-Derivative Controller Tuning 177

Solution k=1.01is obtained from Gp;gn(0) = 1.0. Because Gpign(il.5) = —0.1705 —i0.0074,
¢(1.5) =arctan 2(—0.0074, —0.1705) = —3.0984 and |Gujen(i1.5)I=0.1707 at wy,=1.5.
From (5.15), t=3.849 is obtained. Also, § = 1.133 is obtained from (5.16). So, the reduced
FOPTD model obtained is G,(s) =exp(—1.1335)/(3.849s + 1). Then, the IMC tuning rule
provides k. =3.118, 1; = 4.415 and 74 = 0.494 from Table 5.3. The MATLAB code is shown in
Table 5.11.

Table 5.11 MATLAB code to obtain the reduced FOPTD model in Example 5.7.

mr_exl.m
clear;
w=1.5;
g=g_mr_ex1 (w) ;
k=abs (g_mr_ex1(0));

g_mr_exl.m
function [G]=g_mr_exl (w)
s=i*w;
G=exp(-0.1*s)/ (s+1)"3;
end

tau=sqrt (k"2-abs(g) *2) /abs (qg) /w;
theta=(-atan2 (imag(g),real (g))tatan (-
tau*w)) /w;

% k: static gain, tau: time contant, the-
ta: time delay

fprintf (' k=%5.3f tau=%5.3f theta=%5.3f
\n’, k, tau, theta) ;

command widow
>>mr_exl
k=1.000 tau=3.849 theta=1.133
>> imc_exl1
PI: kcs=2.293, tis=4.415
PID: kcs=3.118, tis=4.415,
tds=0.494

imc_exl.m
k=k; t=tau; th=theta;
r=1.7*th; pi_kcs=(2*t+th) /2/r/k; pi_tis=t+th/2;
r=0.25*th; pid_kcs=(2*t+th)/2/ (r+th) /k; pid_tis=t+th/2;
pid_tds=t*th/ (2*t+th) ;
fprintf (' PI: kcs=%6.3f, tis=%6.3f \n’,pi_kcs,pi_tis);
fprintf (' PID: kcs=%6.3f, tis=%6.3f, tds=%6.3f
\n’,pid_kcs,pid_tis,pid_tds);

Example 5.8
Obtain the tuning parameters of the PID controller for the process of which the transfer function
is G(s) =exp(—0.15)/(s + D’ using the ITAE-2 tuning rule.

Solution k=1.0 is obtained from Gy;gn(0)=1.0. In (5.8), let us define p, = ™, Q=
|Ghign(iwr) @}, py = 4126 — 272, @y = |Ghign(iwr)’w} and yi = k — |Ghign (iwr)[*.
Then, p, and p, can be estimated by the least-squares method mentioned in Chapter 2. Then,

T= 13}/4 and & = \/ (P, +27%)/(41?) are obtained. And 6 is obtained from (5.13). The source
code for the model reduction method is shown in Table 5.12. The estimated SOPTD model
is Gr_n(s)=1.000 exp(70.477s)/(1.5102s2 4+ 2x1.510 x 0.861s + 1). Then, k.=2.784,
7; =2.702 and 74 = 0.924 for the step setpoint change and k. = 6.866, 7; = 1.382 and 74 = 0.685

for the step input disturbance rejection are obtained from Table 5.7.

178 Process Identification and PID Control

Table 5.12 MATLAB code to obtain the reduced SOPTD model in Example 5.8.

mr_ex2.m g_mr_ex2.m
clear; function
w=0.0; delta_w=0.05; [Gl=g_mr_ex2 (w)
while (1) % search boundary in which wu s=i*w;
exists G=exp (-0.1*s)/ (s+1)"3;
w=wt+delta_w; g=g_mr_ex2 (w) ; end
if (imag(g)>0.0) break; end

end
wl=w-delta_w; w2=w; $ w l<wu < w2
while (1) % find wu using the bisection

method
w=(wl+w2)/2; gl=g_mr_ex2 (wl) ; command window
g=g_mr_ex2 (w) ;
if (imag(g) *imag(gl)>0.0) wl=w; else >>mr_ex?2
w2=w; end k=1.000 tau=1.510
if (abs (imag(g))<0.000001) break; end x1=0.861 theta=0.477
end >> jtae_ex?2
wu=w; % ultimate frequency wu is found kcs=2.784, tis=2.702, tds=
k=abs (g_mr_ex2(0)); 0.924
for j=1:10 % least square method kcd=6.866, tid=1.382, tdd=
w=(j-1)*wu/9.0; G(J)=g_mr_ex2 (w) ; 0.685

yv(3,1)=k"2-(abs (G(J))"2);
phi_1(j,1)=(abs(G(3))"2)*w"4;
phi_2(j,1)=(abs (G(j))"2)*w 2;
end % P_hat: solution of the least square
method
PHI=[phi_1phi_2]; Y=y;
P_hat=inv (PHI’ *PHI) *PHI’ *Y;
tau=P_hat (1)~ (1.0/4.0);
xi=((P_hat (2)+2*tau”2)/ (4*tau"2))
~0.5;
theta=(pit+tatan2 (-2*xi*tau*wu,l-wu"2*-
tau”t2)) /wu;
% tau: time contant, xi: damping factor,
theta: time delay
fprintf (' k=%5.3f tau=%5.3f \n’, k, tau) ;
fprintf (' xi=%5.3f theta=%5.3f \n’, x1,
theta) ;

itae_ex2.m

k=k; t=tau; d=xi; th=theta;
% static gain, time constant, dampling factor, time delay
if (d<=0.9)

kcs=(-0.04+(0.333+0.949* (th/t) " (-0.983))*d) /k;

else

Proportional-Integral-Derivative Controller Tuning 179

Table 5.12 (Continued)

kcs=(-0.544+0.308*th/t+1.408* (th/t) "~ (-0.832) *d) /k;
end
if((th/t)<=1.0)
tis=(2.055+0.072*th/t) *d*t;
else
tis=(1.768+0.329*th/t) *d*t;
end
tds=t/ (1.0-exp (- (th/t)"(1.060)*d/0.870))/(0.55+1.683* (th/t)"
(=1.090));
if((th/t)<0.9)
kcd=(-0.670+0.297* (th/t)~(-2.001)4+2.189* (th/t) " (-0.766) *d) /k;
else
kcd=(-0.365+0.260* (th/t-1.400) "2+2.189* (th/t) " (-0.766) *d) /k;
end
if((th/t)<0.4)
tid=(2.212* (th/t) "~ (0.520)-0.300) *t;
else
tid=(-0.975+0.910* (th/t-1.845) "2+ (1-exp(-d/ (0.150+0.330*th/t)))*
(5.250-0.880* (th/t=-2.800)"2)) *t;

end
tdd=t/ (-1.900+1.576* (th/t) "~ (-0.530)+ (1l-exp(-d/ (-0.15+0.939* (th/t)"
(=1.121))))*(1.45+0.969* (th/t)~(-1.171)));

fprintf (' kcs=%6.3f, tis=%6.3f, tds=%6.3f \n’, kcs, tis, tds);
fprintf (' ked=%6.3f, tid=%6.3f, tdd=%6.3f \n’, kcd, tid, tdd) ;

Example 5.9

Obtain the tuning parameters of a PID controller using the ITAE-2 tuning rule for
the process of which the frequency responses are as follows: Gy;gn(i0.0) = 1.00 —10.00,
Ghign(10.2) = 0.50 —i0.76, Ghign(i0.4) = —0.22 —i0.65, Ghign(i0.6) = —0.42 —10.20,
Ghigh(i10.8) = —0.28 —i0.07, Gjgn(i1.0) = —0.13 +i0.13.

Solution k=1.0 is obtained from Gy;gn(0)=1.0. In (5.8), let us define p, = 4, i =
|Ghign (i) @}, py = 40%E% — 212, @, = |Ghign(iwx) @} and yx = 1 — |Ghign (iwy)|*. Then,
P, and p, can be estimated by the least-squares method mentioned in Chapter 2. Then, t = ﬁ}/ 4

and ¢ = \/(p, +212)/(472) are obtained. And 6 is obtained from (5.11). It should be noted that
the sixth frequency data of Gpigh(i1.0) = —0.13 + 10.13 should not be used to estimate the time
delay in (5.11) because it is out of the range of arctan2(Im,Re). So, the fifth frequency
response data of G;gn(10.8) = —0.28 —i0.07 is used in (5.11) in this case. The source code
for the least-squares method is shown in Table 5.13. The estimated SOPTD model is
G,_m(s) = 1.000 exp(—0.8525)/(2.205%5% + 2 x 2.205 x 0.797s + 1). Then, k. =2.151,
7;=3.658 and 74=1.465 for the step setpoint change and k.=4.932, 7;=2.313 and
t4=1.173 for the step input disturbance rejection change are obtained from Table 5.13.

180 Process Identification and PID Control

Example 5.10
Obtain the tuning parameters of a PID controller using the ITAE-2 tuning rule for the following
process:

(—0.354 1)exp(— 0.3s)

Ghign(5) = (s+ 1)3

(5.29)

Solution The unstable zero part of (—0.3s + 1) is approximated by the equivalent time delay
of exp(—0.3s). Then, process (5.29) can be approximated by the following modified model:

exp(—0.6s
Ghigh,modified (§) = % (5.30)
Now, (5.30) can be reduced to the SOPTD model G,,(s) = 1.000 exp(—1.004s)/(1 440%5% +
2 x 1.440 x 0.908s + 1) by using the model reduction method in Table 5.14. Then, the tuning
parameters k. = 1.396, 7; =2.752 and 74 = 0.929 are obtained by the ITAE-2-setpoint tuning

Table 5.13 MATLAB code to obtain the reduced SOPTD model in Example 5.9.

mr_ex3.m command window

clear; >>mr_ex3

w(l)=0.0; w(2)=0.2; w(3)=0.4; w(4) k=1.000 tau=2.205
=0.6; w(5)=0.8; w(6)=1.0; x1=0.797 theta=0.852
G(1)=1.0+1i*0.0; G(2)=0.5-1*0.76; G >> itae_ex3

(3)=-0.22-1*0.65;
G(4)=-0.42-1*0.2; G(5)=-
G(6)=-0.13+1*0.13;

0.28-1*0.07;

kcs=2.150, tis=3.658,
tds=1.465
kcd=4.932, tid=2.313,

k=abs (G (1)) ;

for j=1:6 % least square method
y(J,1)=k*2-(abs(G(J))"2);
phi_1(3,1)=(abs(G())"2)*w(j)"4;
Phi_2(3,1)=(abs (G(3)) ~2) *u (3) ~2;

end % P_hat: solution of the least

square method

PHI=[phi_1 phi_2]; Y=y; P_hat=inv

(PHI’ *PHI) *PHI’ *Y;

tau=P_hat (1) (1.0/4.0); xi=((P_hat

(2)+2*tau"2)/ (4*tau”2))"0.5;

PA=atan2 (imag (G(5)),real (G(5)));

theta=(—PZ—\+atan2(2*xi*tau*w(5),1-

(5)~2*tau”2)) /w(5

% tau: time contant, xi: damping

factor, theta: time delay

fprintf (' k=%5.3f tau=%5.3f \n', k,

tau) ;

fprintf (' xi=%5.3f theta=%5.3f \n’,

xi, theta);

tdd=1.173

Proportional-Integral-Derivative Controller Tuning 181

Table 5.13 (Continued)

itae_ex3.m
k=k; t=tau; d=xi; th=theta;
% static gain, time constant, dampling factor, time delay
if (d<=0.9)
kcs=(-0.04+(0.333+0.949* (th/t) " (-0.983))*d) /k;
else
kcs=(-0.544+0.308*th/t+1.408* (th/t)" (-0.832)*d) /k;
end

if((th/t)<=1.0)
tis=(2.055+0.072*th/t) *d*t;
else
tis=(1.768+0.329*th/t) *d*t;
end
tds=t/ (1.0-exp (- (th/t)"(1.060)*d/0.870))/(0.55+1.683* (th/t)"
(-1.090));
if((th/t)<0.9)

kcd=(-0.670+0.297* (th/t) "~ (-2.001)+2.189* (th/t) "~ (-0.766) *d) /k;
else
kcd=(-0.365+0.260* (th/t-1.400)"2+2.189* (th/t) "~ (-0.766) *d) /k;
end
if((th/t)<0.4)
tid=(2.212* (th/t) "~ (0.520)-0.300) *t;
else
tid=(-0.975+0.910* (th/t-1.845) "2+ (1l-exp(-d/ (0.150+0.330*th/t)))*
(5.250-0.880* (th/t-2.800)"2)) *t;

end
tdd=t/ (-1.900+1.576* (th/t)*(-0.530)+ (1l-exp(-d/ (-0.154+0.939* (th/t) "
(=1.121))))*(1.45+0.969* (th/t)~(-1.171)));

fprintf (' kcs=%6.3f, tis=%6.3f, tds=%6.3f \n’, kcs, tis, tds);
fprintf (' ked=%6.3f, tid=%6.3f, tdd=%6.3f \n’, kcd, tid, tdd) ;

rule. Figure 5.16 shows the control performance. The ITAE-2 tuning rule on the basis of the
approximation model (5.30) shows excellent tuning results. It confirms that the approximation
using the equivalent time delay is acceptable.

Example 5.11
Obtain the tuning parameters of a PID controller using the ITAE-2-setpoint tuning rule for the
following process:

(0.7s+1)(— 0.3+ 1)exp(— 0.4s)

Ghign(s) = Gr1) (5.31)

Solution 1In this case, the stable zero part of (0.7s + 1) should be eliminated for a
conservative model reduction. And the unstable zero part of (—0.3 + 1) is approximated by

182

Process Identification and PID Control

Table 5.14 MATLAB code to solve the design problem and simulate the PID controller

in Example 5.10.

mr_ex4.m

clear;
w=0.0; delta_w=0.05;
while (1) % search boundary in which wu
exists

w=wt+delta_w; g=g_mr_ex4 (w) ;

if (imag(g)>0.0) break; end
end
wl=w-delta_w; w2=w; $wl<wu<w2
while (1) % find wu using the bisection
method

w=(wl+w2) /2; gl=g_mr_ex4 (wl);
g=g_mr_ex4 (w) ;
if (imag(g) *imag(gl)>0.0) wl=w; else
w2=w; end
if (abs(imag(g))<0.000001) break;
end
end
wu=w; % ultimate frequency wu is found
k=abs (g_mr_ex4 (0));
for j=1:10 % least square method
w=(j-1) *wu/9.0; G(J)=g_mr_ex4 (w);
y(J,1)=k"2-(abs(G(3))"2);
phi_1(3,1)=(abs(G(3))"2)*w 4;
phi_2(j,1)=(abs(G(]))"2)*w"2;
end $ P_hat: solution of the least
square method
PHI=[phi_1 phi_2]; Y=y; P_hat=inv
(PHI' *PHI) *PHI' *Y;
tau=P_hat (1)~ (1.0/4.0);
xi=((P_hat(2)+2*tau”2)/ (4*tau™2))
~0.5;
theta=(pit+atan2 (-2*xi*tau*wu,l-
wut2*tau’2)) /wu;
% tau: time contant, xi: damping fac-
tor, theta: time delay
fprintf (' k=%5.3f tau=%5.3f \n’, k,
tau) ;
fprintf (' xi=%5.3f theta=%5.3f
\n’,xi, theta);

command window
>>mr_ex4
k=1.000 tau=1.440
xi=0.908 theta=1.004
>> jtae_ex4d
kcs=1.396, tis=2.752, tds=
0.929
kcd=2.560, tid=2.099, tdd=
0.951
>>pid_itae2_ex4

g_mr_ex4.m
function [G]=g_mr_ex4 (w)
s=1*w;
G=exp (-0.6*s)/ (s+1)"3;
end

g_pid_itae2_ex4.m

function [next_x y]=g_pid_
itae2_ex4 (x,delt,u)
subdelt=delt/5;

n=round (delt/subdelt) ;
A=[00-1;10-3;01-3];B=[1
;-0.3;01;

C=[001]; delay=0.3;
delay_k=round(delay/delt) ;
for i=1:n

dx=A*x+B*u (500-delay_k);
x=x+dx*subdelt;

end

next_x=x; y=C*x;

end

itae_ex4.m

k=k; t=tau; d=xi; th=theta;

o

if (d<=0.9)

% static gain, time constant, dampling factor, time delay

kcs=(-0.04+(0.333+0.949* (th/t) " (-0.983)) *d) /k;

else

Proportional-Integral-Derivative Controller Tuning

183

Table 5.14 (Continued)

kcs=(-0.544+0.308*th/t+1.408* (th/t) "~ (-0.832) *d) /k;
end
if((th/t)<=1.0)
tis=(2.055+0.072*th/t) *d*t;
else
tis=(1.768+0.329*th/t) *d*t;
end
tds=t/(1.0-exp(-(th/t)"(1.060)*d/0.870))/(0.55+1.683* (th/t)"
(=1.090));
if((th/t)<0.9)
kcd=(-0.670+0.297* (th/t)*(-2.001)+2.189* (th/t) "~ (-0.766) *d) /k;
else
kcd=(-0.365+0.260* (th/t-1.400) "2+2.189* (th/t) " (-0.766) *d) /k;
end
if((th/t)<0.4)
tid=(2.212* (th/t) "~ (0.520)-0.300) *t;
else
tid=(-0.975+0.910* (th/t-1.845) "2+ (1-exp(-d/ (0.150+0.330*th/t)))*
(5.250-0.880* (th/t=-2.800)"2)) *t;
end

tdd=t/(-1.900+1.576* (th/t) "~ (-0.530) +(l-exp (-d/ (-0.15+0.939* (th/t) "

(=1.121))))*(1.45+0.969* (th/t)~(-1.171)));
fprintf (' kcs=%6.3f, tis=%6.3f, tds=%6.3f \n’, kcs, tis, tds);
fprintf (' ked=%6.3f, tid=%6.3f, tdd=%6.3f \n’, kcd, tid, tdd) ;

pid_itae2_ex4.m

kc=kcs; ti=tis; td=tds;
t=0.0; t_final=15.0;
x=[000]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; dis=0.0;
delta_t=0.02; n=round (t_final/delta_t);
h_u=zeros (1,500); s=0.0;
for i=1:n

t_array(i)=t; y_array(i)=y; ys_array(i)=ys;

if(t>1l) ys=1.0; else ys=0.0; end % setpoint change simulation

)

X

s=s+ (kc/ti) * (ys-y) *delta_t;
u=kc* (ys-y)+s+kc*td* ((ys-y) - (ysb-yb)) /delta_t;

ysb=ys; yb=y; % one sampling before
u_array(i)=u;

for j=1:499
h_u(j)=h_u(j+1);
end

h_u(500)=u+dis;
[x y]=g_pid_itae2_ex4(x,delta_t,h_u);
t=t+delta_t;
end
figure (3); plot(t_array,ys_array, t_array,y_array); legend(’'y_{s}
(B, 'y(e)y");
figure (2); plot(t_array,u_array);

% 1f(t>1) dis=1.0; else dis=0.0; end $ disturbance rection simulation

184 Process Identification and PID Control

1.2

0.8} ki |

04} ;': ceenemns Y(1) i

0.2} _

I
o
n

(@)

0.4

0.3}]

0.2} .

0.1} .

Figure 5.16 Tuning results of the ITAE-2 tuning rule with the approximated model in Example 5.10.

the equivalent time delay of exp(—0.3s). Then, the modified model is

exp(—0.7s
Ghigh,modiﬁed (S) = % (532)

Finally, the reduced SOPTD model (5.33) is obtained by applying the model reduction
methOd to Ghigh,modiﬁed(s)'

B exp(— 1.107s)
1431282 +2 x 1.431 x 0.913s5+ 1

Grm(s) (5.33)
Finally, the tuning parameters k.= 1.286, 1;=2.758 and 74=0.937 are obtained from
Table 5.7.
Table 5.15 and Figure 5.17 show the control performance of a PID controller designed by the
ITAE-2 tuning rule based on the approximate model. Because the stable zero is neglected, a
conservative control action is obtained.

Proportional-Integral-Derivative Controller Tuning

185

Table 5.15 MATLAB code to solve the design problem and simulate the PID controller

in Example 5.11.

mr_ex5.m

clear;
w=0.0; delta_w=0.05;
while (1) % search boundary in which wu
exists

w=wtdelta_w; g=g_mr_ex5(w) ;

if (imag(g)>0.0) break; end
end
wl=w-delta_w; w2=w; $w l<wu< w2
while (1) % find wu using the bisection
method

w=(wl+w2) /2; gl=g_mr_ex5 (wl) ;
g=g_mr_ex5 (w) ;

if (imag(g) *imag(gl)>0.0) wl=w; else
w2=w; end

if (abs (imag(g))<0.000001) break; end

end

wu=w; % ultimate frequency wu is found

k=abs (g_mr_ex5(0));

for j=1:10 % least square method
w=(j-1)*wu/9.0; G(J)=g_mr_ex5(w);
v(J,1)=k"2-(abs(G(J))"2);
phi_1(j,1)=(abs(G(]j))"2)*w"4;
phi_2(3,1)=(abs (G (3))"2) *w 2;

end % P_hat: solution of the least square

method

PHI=[phi_1 phi_2]; Y=y; P_hat=inv

(PHI’ *PHI) *PHI' *Y;

tau=P_hat (1)~ (1.0/4.0);

xi=((P_hat (2)+2*tau”2)/ (4*tau”2))

~0.5;

theta= (pitatan2 (-2*xi*tau*wu, l-wu"2*-

tau”2)) /wu;

% tau: time contant, xi: damping factor,

theta: time delay

fprintf (' k=%5.3f tau=%5.3f \n’, k, tau) ;

fprintf (' xi=%5.3f theta=%5.3f

\n’,xi, theta);

J
]

command window
>>mr_ex5
k=1.000 tau=1.431
x1=0.913 theta=1.107
>> itae_ex5
kcs=1.286, tis=2.758, tds=
0.937
kcd=2.259, tid=2.196, tdd=
0.981
>>pid_itae2_ex5

g_mr_ex5.m
function [G]=g_mr_ex5 (w)
s=i*w;
G=exp (-0.7*s)/ (s+1)"3;
end

g_pid_itae2_ex5.m

function [next_x y]l=g_pid_
itae2_ex5(x,delt,u)
subdelt=delt/5; n=round
(delt/subdelt) ;
A=[00-1;10-3;01-3];B=[1
; 0.4; -0.2171;
C=[001]; delay=0.4;
delay_k=round (delay/delt) ;
for i=1l:n

dx=A*x+B*u (500-delay_Xk);

x=x+dx*subdelt;
end
next_x=x; y=C*x;
end

(continued)

186 Process Identification and PID Control

Table 5.15 (Continued)

itae_ex5.m
k=k; t=tau; d=xi; th=theta;
% static gain, time constant, dampling factor, time delay
if (d<=0.9)
kcs=(-0.04+(0.33340.949* (th/t) " (-0.983)) *d) /k;
else
kcs=(-0.544+0.308*th/t+1.408* (th/t) " (-0.832) *d) /k;
end
if((th/t)<=1.0)
tis=(2.055+0.072*th/t) *d*t;
else
tis=(1.768+0.329*th/t) *d*t;
end
tds=t/(1.0-exp(-(th/t)"(1.060)*d/0.870))/(0.55+1.683* (th/t)"
(=1.090));
if((th/t)<0.9)
kcd=(-0.670+0.297* (th/t)*(-2.001)+2.189* (th/t) "~ (-0.766) *d) /k;
else
kcd=(-0.365+0.260* (th/t-1.400) "2+2.189* (th/t)"(-0.766) *d) /k;
end
if((th/t)<0.4)
tid=(2.212* (th/t) "~ (0.520)-0.300) *t;
else
tid=(-0.975+0.910* (th/t-1.845) "2+ (1-exp(-d/ (0.150+0.330*th/t)))*
(5.250-0.880* (th/t-2.800)"2)) *t;

end
tdd=t/ (-1.900+1.576* (th/t) "~ (-0.530)+ (1l-exp(-d/ (-0.15+0.939* (th/t)"
(=1.121))))*(1.45+0.969* (th/t) " (-1.171)));

fprintf (' kcs=%6.3f, tis=%6.3f, tds=%6.3f \n’, kcs, tis, tds);
fprintf (' ked=%6.3f, tid=%6.3f, tdd=%6.3f \n’, kcd, tid, tdd) ;

pid_itae2_ex5.m

$kc=kcs; ti=tis; td=tds;

kc=kcd; ti=tid; td=tdd;

t=0.0; t_final=20.0;

x=[000]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; dis=0.0;

delta_t=0.02; n=round (t_final/delta_t);

h_u=zeros(1,500); s=0.0;

for i=1:n
t_array(i)=t; y_array(i)=y; ys_array(i)=ys;

s 1f(t>1) ys=1.0; else ys=0.0; end $ setpoint change simulation
if(t>1) dis=1.0; else dis=0.0; end % disturbance rection simulation
s=s+ (kc/ti)* (ys-y) *delta_t;
u=kc* (ys-y) +s+kc*td* ((ys-y) - (ysb-yb)) /delta_t;
ysb=ys; yb=y; % one sampling before
u_array(i)=u;
for j=1:499

h_u(j)=h_u(j+1);

Proportional-Integral-Derivative Controller Tuning 187

Table 5.15 (Continued)

end
h_u(500)=u+dis;
[x y]=g_pid_itae2_ex5(x,delta_t,h_u);
t=t+delta_t;
end
figure (4); plot(t_array,ys_array, t_array,y_array); legend(’'y_{s}
(e) ", "y(t)");
figure (2) ; plot(t_array,u_array);

Example 5.12
Design the cascade control of Figure 5.18. For a detailed description on the cascade control,
refer to Chapter 7.

1.5

¥s(t)
05} ceeneeees (1) |

0.4

0.3} ¥s(t)
: [y(t)

oif i]

(b)

Figure 5.17 Tuning results of the ITAE-2 tuning rule with the approximated model in Example 5.11.

188 Process Identification and PID Control

+ +
—»(> PIDs) > > K exp(-0.1s) .| exp(-0.35) y(S)=
¥ I_ ® Jus T_ M (s+1)°

Figure 5.18 Cascade control system.

The ultimate gain of the open-loop transfer function exp(—0.1s)/(s + 1)2 is k, =20.67. Let
us choose k; = 6.89(k; = k,/3) as the proportional gain of the internal feedback loop. Then, the
transfer function from u(?) to y(¢) is

Gon(s) 28) __689exp(—045)/(s+1)° (5.34)
“Y T U(s) T 14 6.89exp(— 0.15)/(s+ 1) |

Note that the PID controller should be tuned for the overall process. Then, (5.34) should be
reduced to the SOPTD model to tune the PID controller using the ITAE-2-setpoint. The reduced
SOPTD model obtained by the model reduction method is G,(s) =0.873 exp(—1.136s)/
(1.261%5% + 2 x 1.261 x 0.964s + 1) and the tuning parameters by the ITAE-2-setpoint based
on the reduced model are k., =1.390, 7; =2.577 and t4=0.823.

The MATLAB code for Example 5.12 and the simulation results are shown in Table 5.16 and
Figure 5.19 respectively.

Example 5.13

Consider the PID control combined with the internal feedback loop of the P controller in
Figure 5.20. Design the PID controller and the internal P controller of G;(s) = k; for G(s) = exp
(—0.25)/[(55 — D)(s + 1)?].

Solution First, the unstable process G(s) = exp(—0.2s)/[(5s — 1)(s + 1)2] is reduced to the
SOPTD model G, (s)=exp(—0.713s)/(4.860s — 1)/(1.616s + 1) by the model reduction
method for the unstable process. Then, the P controller tuned by the optimal gain margin

Table 5.16 MATLAB code to solve the design problem and simulate the PID controller
in Example 5.12.

mr_ex6.m command window
clear; >>mr_ex6
w=0.0; delta_w=0.05; k=0.873 tau=1.261
while (1) % search boundary in which x1=0.964 theta=1.136
wu exists >> itae_ex6
w=wt+delta_w; g=g_mr_ex6 (w) ; kcs=1.390, tis=2.577, tds=0.823
if (imag(g)>0.0) break; end kcd=2.273, tid=2.108, tdd=0.880
end >>pid_itae2_ex6
wl=w-delta_w; w2=w; $ w 1< wu < w2 g_mr_ex6.m
while (1) $findwuusing thebisection | function [G]=g_mr_ex6 (w)
method s=i*w;

Proportional-Integral-Derivative Controller Tuning

189

Table 5.16 (Continued)

w=(wl+w2)/2; gl=g_mr_ex6 (wl) ;
g=g_mr_ex6 (w) ;
if (imag(g) *imag (gl)>0.0) wl=w;
else w2=w; end
if (abs (imag(g))<0.000001) break;
end
end
wu=w; % ultimate frequency wu is
found
k=abs (g_mr_to_second(0)) ;
for j=1:10 % least square method
w=(j-1)*wu/9.0; G(J)=g_mr_ex6
(w);
y(3,1)=k-(abs (G(3))"2);
phi_1(j,1)=(abs(G(3))"2)*w"4;
phi_2(j,1)=(abs (G(J))"2)*w"2;
end % P_hat: solution of the least
square method
PHI=[phi_1 phi_2]; Y=y; P_hat=inv
(PHI’ *PHI) *PHI' *Y;
tau=P_hat (1)*(1.0/4.0); xi=
((P_hat (2)+2*tau~2)/ (4*tau"2))
~0.5;
theta=(pit+tatan2 (-2*xi*tau*wu, 1-
wut2*tau~2)) /wu;
% tau: time contant, xi: damping
factor, theta: time delay
fprintf (' k=%5.3f tau=%5.3f \n’, k,
tau) ;
fprintf (' xi=%5.3f theta=%5.3f \n’,
x1i, theta);

S

G=(6.89*exp(-0.4*s)/ (s+1)"5)/ (1
+6.89%exp (-0.1*s)/ (s+1)"2);
end

g_pid_itae2_ex6_p.m

function
[next_x,yl=g_pid_itae2_ex6_p(x,
delt,u);
subdelt=delt/5; n=round(delt/sub-
delt) ;
A=[00-1;10-3;01-3];B=[1;0;01;
C=[001]; delay=0.3;
delay_k=round(delay/delt
+0.00001) ;
for i=1:n

dx=A*x+B*u (500-delay_k) ;

x=x+dx*subdelt;
end
next_x=x; y=C*x;
return

g_pid_itae2_ex6_s.m
function [next_x,yl=g_pid_i-
tae2_ex6_s(x,delt,u);
subdelt=delt/5; n=round(delt/sub-

delt) ;

A=[0-1;1-2]; B=[1; 0]; C=[017];
delay=0.1;
delay_k=round(delay/delt
+0.00001) ;

for i=1:n

dx=A*x+B*u (500-delay_k);
x=x+dx*subdelt;

end

next_x=x; y=C*x;

return

190 Process Identification and PID Control

Table 5.16 (Continued)

itae_ex6.m
k=k; t=tau; d=xi; th=theta;
% static gain, time constant, dampling factor, time delay
if (d<=0.9)
kcs=(-0.04+(0.33340.949* (th/t) " (-0.983)) *d) /k;
else
kcs=(-0.544+0.308*th/t+1.408* (th/t) " (-0.832) *d) /k;
end
if((th/t)<=1.0)
tis=(2.055+0.072*th/t) *d*t;
else
tis=(1.768+0.329*th/t) *d*t;
end
tds=t/(1.0-exp(-(th/t)"(1.060)*d/0.870))/(0.55+1.683* (th/t)"
(=1.090));
if((th/t)<0.9)
kcd=(-0.670+0.297* (th/t)*(-2.001)+2.189* (th/t) "~ (-0.766) *d) /k;
else
kcd=(-0.365+0.260* (th/t-1.400) "2+2.189* (th/t)"(-0.766) *d) /k;
end
if((th/t)<0.4)
tid=(2.212* (th/t) "~ (0.520)-0.300) *t;
else
tid=(-0.975+0.910* (th/t-1.845) "2+ (1-exp(-d/ (0.150+0.330*th/t)))*
(5.250-0.880* (th/t-2.800)"2)) *t;

end
tdd=t/ (-1.900+1.576* (th/t) "~ (-0.530)+ (1l-exp(-d/ (-0.15+0.939* (th/t)"
(=1.121))))*(1.45+0.969* (th/t) " (-1.171)));

fprintf (' kcs=%6.3f, tis=%6.3f, tds=%6.3f \n’, kcs, tis, tds);
fprintf (' ked=%6.3f, tid=%6.3f, tdd=%6.3f \n’, kcd, tid, tdd) ;

pid_itae2_ex6.m
kcl=kcs; til=tis; tdl=tds; Sprimary PID
kc2=6.89; %$secondary P
ysl=1.0; dis=0.0; $setpoint and disturbance
tf=20; delt=0.02; tf_k=round(tf/delt);
uul=zeros (1,500); uu2=zeros(1,500); yy2=zeros (1,500);
xl=zeros (3,1); x2=zeros(2,1);
y1=0.0; y1b=0.0; s1=0.0; ys1lb=0.0; y2=0.0; y2b=0.0;
for k=1:tf_k
t=(k-1) *delt;
T(k)=t; Y1(k)=yl; Y2 (k)=y2; ¥Ysl (k)=ysl;
Ul (k) =uul (500); U2 (k)=uu2 (500) ;
for i=1:499 uul (i)=uul (i+1); end
for i=1:499 uu2 (i)=uu2 (i+1l); end
for i=1:499 yy2 (1)=yy2 (i+1l); end
sl=sl+(kcl/til)*(ysl-yl)*delt;
uul (500)=kcl* (ysl-yl)+sl+kcl*tdl* (ysl-yl-yslb+ylb)/delt;

(1
(i

Proportional-Integral-Derivative Controller Tuning 191

Table 5.16 (Continued)

uu2 (500) =kc2* (uul (500) -y2) ;
yy2(500)=y2;
ylb=yl; yslb=ysl;
[x2,y2]=g_pid_itae2_ex6_s(x2,delt,uu2); %cascade
y2=y2+dis; %disturbance
[x1,yl]l=g_pid_itae2_ex6_p(xl,delt,yy2);

end

figure (1) ; plot(T,¥sl,T,Y1l);

figure (2); plot(T,Ul);

tuning rule in Table 5.9 is k; =2.177. Now, the overall transfer function from u(¢) to y(¢) of
Goveral(8) = G(s)/(1 + G(s)k;) can be reduced to (5.35) using the model reduction method for
the stable process. Then, the PID controller can be designed by the ITAE-2-setpoint on the basis
of the reduced model as shown in (5.35):

0.850exp(—0.792s)

G S)=)
m(s) 2.633%52 +2 x 2.633 x 0.305s + 1

1
Gc(s):1.182(1+%+4.157s> (5.35)

Tha MATLAB code and the simulation result are shown in Table 5.17 and Figure 5.21
respectively.

1.4

0.8} H i

0.6} : [y(t) i

04t 1

02}]

0 nd 1 1 1
0 5 10 15 20

t

Figure 5.19 Tuning results of the ITAE-2 rule on the basis of the reduced model in Example 5.12.

Ys(S) + u(s) +)
> PID(s) —>©—> G(s) >
L

Figure 5.20 PID control combined with an internal feedback loop to control an unstable process.

A

192

Process Identification and PID Control

Table 5.17 MATLAB code to solve the design problem and simulate the PID controller

in Example 5.13.

mr_ex7.m

clear;
w=0.0; delta_w=0.05;
while (1) % search boundary in which
wu exists

w=wtdelta_w; g=g_mr_ex7 (w);

if (imag(g)>0.0) break; end
end
wl=w-delta_w; w2=w; $ w l<wu< w2
while (1) $findwuusing thebisection
method

w=(wl+w2)/2;

gl=g_mr_ex7(wl); g=g_mr_ex7(w);

if (imag(g) *imag (gl)>0.0) wl=w;
else w2=w; end

if (abs(imag(g))<0.000001) break;

end

end

wu=w; % ultimate frequency wu is
found

k=abs (g_mr_ex7(0)) ;

for j=1:10 % least square method
w=(Jj-1)*wu/9.0;
G(j)=g_mr_ex7 (w);

y(3,1)=k"2-(abs (G(3))"2);
phi_1(j,1)=(abs(G(]))"2)*w"2;
phi_2(j,1)=(abs (G(]j))"2)*w"4;

end % P_hat: solution of the least
square method

PHI=[phi_1 phi_2];

Y=y; P_hat=inv (PHI’ *PHI) *PHI’ *Y;
tau2=(P_hat(l)+sqrt(P_hat(1l)"2-
4*P_hat(2)))/2;

tau=sqgrt(tau2) ;

taus=sqgrt (P_hat(2) /tau"2);
theta=(atan (tau*wu)-atan (taus*-
wu)) /wu;

% tau: time contant, xi: damping
factor, theta: time delay
fprintf (" k=%5.3f tau=%5.

3f taus=%5.3f theta=%5.3f \n’, k,
tau, taus, theta);

command window
>>mr_ex’7
k=1.000 tau=4.860
taus=1.616 theta=0.713
>> OGM_unstable_ex7
P: P_ki=2.177
PD: PD_ki=4.236, PD_tdi=0.787
>>mr_overall_ex7
k=0.850 tau=2.633
xi=0.305 theta=0.792
>> itae_ex7
kcs=1.182, tis=1.666, tds=4.157
kcd=5.054, tid=2.328, tdd=1.715
>>pid_OGM_unstable_ex7

g_mr_ex7.m
function [G]=g_mr_ex7 (w)
s=1i*w;
G=exp (-0.2*s)/((5*s-1)*(s+1)"2);
end

g_mr_overall_ex7.m
function [G]=g_mr_overall_ex7 (w)
s=1i*w;
Gp=exp (-0.2*%s) / (5*s-1)/ (s+1)"2;
Gec=2.177;
G=Gp/ (1+Gp*Gc) ;
end

g_pid_OGM_unstable_ex7.m
function [next_x y] =g_pid_OGM_un-
stable_ex7 (x,delt,u)

g_OGM_unstable_ex7.m
function
[G]=g_OGM_unstable_ex7 (w, tdi)

Proportional-Integral-Derivative Controller Tuning 193

Table 5.17 (Continued)

subdelt=delt/5; n=round(delt/sub- s=1i*w;

delt); G=exp (-0.2*s)* (1+tdi*s)/(5*s-1)/
A=[001/5;10-3/5;01-9/5]1; (s+1)"2;

B=[1/5; 0; 0]; C=[001]; end

delay=0.2;

delay_k=round (delay/delt) ;
for i=1:n
dx=A*x+B*u (500-delay_Xk) ;
x=x+dx*subdelt;
end
next_x=x; y=C*x;
end

OGM_unstable_ex7.m

k=k; t=tau; ts=taus; th=theta;
% static gain, time constant (unstable), time constant (stable), time delay
w=0.0; delta_w=0.05;
while (1) % search boundary in which wu exists

w=w+delta_w; g=g_OGM_unstable_ex7(w,0);

if (imag(g)>0.0) break; end
end
wl=w-delta_w; w2=w; 3 w 1< wu < w2
while (1) % find wu using the bisection method

w=(wl+w2) /2; gl=g_OGM_unstable_ex7 (wl,0);
g=g_OGM_unstable_ex7(w,0);

if (imag(g) *imag(gl)>0.0) wl=w; else w2=w; end

if (abs(imag(g))<0.00000001) break; end
end
wu=w; % ultimate frequency wu is found
gu=g_OGM_unstable_ex7 (wu,0) ;
P_ki=1/sqrt(abs(gu) *abs (k)); % tuning parameter for P controller
X1=-0.003+0.6482* (ts/t)-2.2841* (ts/t)"2+2.6221* (ts/t)"3-0.9611* (ts/
t)"4;
X2=0.2446-1.0410* (ts/t)+13.6723* (ts/t)"2-16.7622* (ts/t)"3+5.1471%*
(ts/t)"4;
X3=0.16854+0.8289* (ts/t)-9.3630* (ts/t)"2+2.9855* (ts/t)"3+7.3803* (ts/
t)~4;
PD_tdi=t* (X1+X2* (th/t)+X3* (th/t)"2); % td for PD controller
w=0.0; delta_w=0.05;
while(l) % search boundary in which wu exists

w=wt+delta_w; g=g_OGM_unstable_ex7 (w, PD_tdi) ;

if (imag(g)>0.0) break; end
end
wl=w-delta_w; w2=w; 3w l<wu < w2
while (1) % find wu using the bisection method

w=(wl+w2) /2; gl=g_OGM_unstable_ex7 (wl,PD_tdi); g=g_OGM_unstable_ex7
(w, PD_tdi);

(continued)

194 Process Identification and PID Control

Table 5.17 (Continued)

if (imag(g) *imag (gl)>0.0) wl=w; else w2=w; end

if (abs (imag(g))<0.00000001) break; end
end
wu=w; % ultimate frequency wu is found
gu=g_OGM_unstable_ex7 (wu,PD_tdi);
g0=g_OGM_unstable_ex7(0,PD_tdi) ;
PD_ki=1/sqgrt (abs (gu) *abs (g0)); % ki for PD controller
fprintf ('P: P_ki=%6.3f \n’,P_ki);
fprintf (' PD: PD_ki=%6.3f, PD_tdi=%6.3f \n’,PD_ki,PD_tdi);

mr_overall_ex7.m
w=0.0; delta_w=0.05;
while (1) % search boundary in which wu exists
w=wt+delta_w; g=g_mr_overall_ex7(w);
if (imag(g)>0.0) break; end
end
wl=w-delta_w; w2=w; 3w l<wu < w2
while (1) % find wu using the bisection method
w=(wl+w2)/2; gl=g_mr_overall_ex7(wl); g=g_mr_overall_ex7 (w);
if (imag(g) *imag (gl)>0.0) wl=w; else w2=w; end
if (abs (imag(g))<0.000001) break; end
end
wu=w; % ultimate frequency wu is found
k=abs (g_mr_overall_ex7(0));
for j=1:10 % least square method
w=(j-1)*wu/9.0; G(J)=g_mr_overall_ex7 (w);
v(J,1)=k"2-(abs(G(]))"2);
phi_1(j,1)=(abs(G(3))"2)*w"4;
phi_2(3,1)=(abs(G(3))"2)*w"2;
end % P_hat: solution of the least square method
PHI=[phi_1 phi_2]; Y=y; P_hat=inv (PHI’ *PHI) *PHI’ *Y;
tau=P_hat(1)"(1.0/4.0); xi=((P_hat (2)+2*tau~2)/(4*tau”2))”°0.5;
theta= (pit+atan2 (-2*xi*tau*wu, 1-wu*2*tau”2)) /wu;
% tau: time contant, xi: damping factor, theta: time delay
fprintf (' k=%5.3f tau=%5.3f \n’, k, tau) ;
fprintf (' xi=%5.3f theta=%5.3f \n’,xi, theta) ;

]
]

itae_ex7.m

k=k; t=tau; d=xi; th=theta;
% static gain, time constant, dampling factor, time delay
if (d<=0.9)

kcs=(-0.04+(0.33340.949* (th/t)"(-0.983))*d) /k;
else

kcs=(-0.544+0.308*th/t+1.408* (th/t)"(-0.832) *d) /k;
end
if((th/t)<=1.0)

tis=(2.055+0.072*th/t) *d*t;
else

Proportional-Integral-Derivative Controller Tuning 195

Table 5.17 (Continued)

tis=(1.768+0.329*th/t) *d*t;
end
tds=t/(1.0-exp(-(th/t)"(1.060)*d/0.870))/(0.55+1.683* (th/t)"
(=1.090)) ;
if((th/t)<0.9)
kcd=(-0.670+0.297* (th/t)*(-2.001)+2.189* (th/t) "~ (-0.766) *d) /k;
else
kcd=(-0.365+0.260* (th/t-1.400) ~2+2.189* (th/t)~(-0.766) *d) /k;
end
if((th/t)<0.4)
tid=(2.212* (th/t) "~ (0.520)-0.300) *t;
else
tid=(-0.975+0.910* (th/t-1.845) "2+ (1l-exp (-d/ (0.150+0.330*th/t)))*
(5.250-0.880* (th/t-2.800)"2)) *t;
end
tdd=t/ (-1.900+1.576* (th/t)~(-0.530)+ (1l-exp (-d/ (-0.15+0.939* (th/t)"
(=1.121))))*(1.45+0.969* (th/t) "~ (-1.171)));
fprintf (' kcs=%6.3f, tis=%6.3f, tds=%6.3f\n’, kcs, tis, tds);
fprintf (' ked=%6.3f, tid=%6.3f, tdd=%6.3f\n’, kcd, tid, tdd) ;

pid_OGM_unstable_ex7.m

$kci=PD_ki; tdi=PD_tdi; % OGM_unstable tuning parameters
kci=P_ki; tdi=0.0; % OGM_unstable tuning parameters
kc=kcs; ti=tis; td=tds; $ ITAE-2-setpoint tuning parameters
t=0.0; t_final=50.0; x=[000]"; y=0.0; yb=0.0; ys=0.0; ysb=0.0; dis=0.0;
delta_t=0.02; n=round (t_final/delta_t); s=0.0; h_u=zeros (1,500);
for i=1:n
t_array(i)=t; y_array(i)=y; ys_array(i)=ys;
if(t>1) ys=1.0; else ys=0.0; end % setpoint change simulation
% 1f(t>1) dis=1.0; else dis=0.0; end % disturbance rection simulation
s=s+(kc/ti)* (ys-y) *delta_t;
u=kc* (ys-y) +s+kc*td* ((ys-y) - (ysb-yb)) /delta_t;
ui=kci*y+kci*tdi* (y-yb)/delta_t;
ysb=ys; yb=y; % one sampling before
u_array (i)=u-ui;
for j=1:499
h_u(j)=h_u(j+1);
end
h_u(500)=u-ui+dis;
[x y]=g_pid_OGM_unstable_ex7 (x,delta_t,h_u);
t=t+delta_t;
end
figure (3); plot(t_array,ys_array, t_array,y_array);
legend ("y_{s}(t)’,"y(t)");
figure (2); plot(t_array,u_array);

196 Process Identification and PID Control

........

o8l | l

0.6

Ys(O) |]
ceveomnnn Y(1)

02|}]

t

Figure 5.21 Control performance of a PID controller combined with an internal P controller tuned by
the ITAE-2-setpoint and the OGM-unstable tuning methods based on the reduced models.

5.9 Consideration of Modeling Errors

If the process model has significant errors, then the PID controller should be tuned in a
conservative way. The simplest method to incorporate the modeling error is to modify the
model parameters in the direction that the tuning rules provide more conservative tuning
parameters. From the tuning formula for the IMC, ITAE-1 and ITAE-2, itis clear that the tuning
parameters become conservative as increasing k, T and 6/t of the FOPTD and SOPTD models.
So, the recommendation is to use new adjustable parameters (e, ¢, and ey/,) in the form
k=k(1+ex),T=1(l1+e:)and6 = 0(1 + e:)(1 + eg/,). For example, if 5% modeling errors
are assumed (that is, ¢, = e, = eq, = 0.05), then k = 1.05k, 7 = 1.057 and 6 = 1.05%0 will be
obtained. Then, the tuning rules on the basis of the modified model of k = 1.05k,7 = 1.05t and
6 = 1.05%0 would provide more conservative tuning parameters. For the ZN tuning rule,
adjustable parameters (e; and e,,) in the form of ky = ky/(1+e;) and p, = pu(1+ ep) can be
used to consider the modeling errors.

5.10 Concluding Remarks

Several simple PID tuning rules are introduced in this chapter. If the dynamics of the process are
simple and a roughly tuned PID controller satisfies the control requirements, then trial-and-error
tuning is sufficient. For a more systematic tuning, the ZN, IMC, ITAE-1 and ITAE-2 tuning rules
are available for a stable process. The ZN tuning rule needs the ultimate frequency data of the
process and the IMC and ITAE-1 tuning rules require the FOPTD model. The ITAE-2 needs
the SOPTD model. Among the ZN, IMC and ITAE-1 tuning rules, the IMC tuning rule and the
ITAE-1-disturbance show the best tuning result for the step setpoint change problem and for the
step input disturbance rejection problem respectively. ITAE-2 shows almost the same responses
as those of the optimal tuning. If the aim is for high performance or the process is underdamped,
then the ITAE-2 tuning rule is recommended. Also, the optimal gain margin tuning rule for an
unstable process is introduced. If the given process is high order, then it can be reduced to an
FOPTD or SOPTD model using the model reduction method. Then, it is straightforward to tune

Proportional-Integral-Derivative Controller Tuning 197

the PID controller using the above-mentioned tuning rules. The tuning strategy using model
reduction is useful for the tuning of a PID controller combined with an internal feedback loop for
cascade control, an integrating process and an unstable process.

Problems

5.1

5.2

53

54

5.5

5.6

5.7

5.8

59

Find the tuning parameters of a PID controller using the IMC and the ITAE-1 tuning rules
for the process G(s) = 1.5 exp(—0.3s)/(10s + 1).

(a) no modeling errors.
(b) 3% modeling errors.

Reduce the process G(s) =2.0exp(—0.2s)/(s + 1)3 to an FOPTD model and tune the PID
controller for the process using the IMC and the ITAE-1 tuning rules.
Find the tuning parameters of a PID controller using the ITAE-2 tuning rule for the process
G(s) = 5.0exp(— 0.3s)/(25* + 6.0s + 1.5).
Find the tuning parameters of a PID controller using the ITAE-2 tuning rule for the process
G(s) = 5.0(— 0.2s + 1)exp(— 0.3s)/(2s* + 6.0s + 1.5).
Find the tuning parameters of a PID controller using the ZN tuning rule for the following
processes:

dy(t
(a) 2.0% £y(1) = L5u(t—0.3)

dy(z
(b) z.o% £y(f) = 1.5u(t— 0.3) +5.0
~ 3.0exp(—0.5s)
© Gls) = 252+ 55+ 1
(1) dy(0)

3.0
e dt

(e) G(s) =

@ 1.5 +1.2y(1) = 1.0u(— 0.1) +0.5

(s+1)

—-2.0
(s+1)"
Find the tuning parameters of a P and a PD controller for the process G(s)=2.0 exp
(—=0.15)/3s — 1)(s + 1).
Reduce the process G(s) =2.0 exp(—0.25)/(s + 1)? to an SOPTD model and tune the PID
controller for the process using the ITAE-2 tuning rules. Simulate the control performance
of the PID controller for a step setpoint change and a step input disturbance.
Find the tuning parameters of a PID controller using the ZN, IMC, ITAE-1 and ITAE-2
tuning rules and compare the control performances for the process G(s) = 1.5 exp(—0.3s)/
(s + D@s + D@Bs + 1).
Find the tuning parameters of a PID controller using the ITAE-2 tuning rule and simulate
the control performance for the step setpoint change at #=1.0. You should define new
deviation variables for the appropriate implementation of the PID controller. yy(#) is not
measurable. The process output and the process input are y(¢) and u(¢) respectively.

) G(s) =

198 Process Identification and PID Control

d?yo(1) dyo(?)
2 —u(t—03)+1.
200 220 D yg() = ult—03) + 1.0
y(#) = yo(2) +3.0
dyol(1 dy(t
W@ _y equivalently b, y(0)=3.0, u(t)= —1.0 fort<0
d[=0 dt =0

5.10 Run the virtual process of Process 1 (refer to the Appendix for details) and tune the PID
controller using the trial-and-error tuning rule.

5.11 Run the virtual process of Process 1 and tune the PID controller using the continuous-
cycling method.

5.12 Runthe virtual process of Process 1 and tune the PID controller using the IMC tuning rule.
Use the PRCmethod to estimate the FOPTD model.

5.13 Find the tuning parameters of a PID controller for the process of which the frequency
responses are

(a) G@10.0)=1.5-10.0, G(10.9) =0.0 —1i0.5;
(b) G(i0.0)=1.0—10.0, G(i0.3) = 0.307 — 0.668i, G(i0.6) = —0.122 — 0.391i, G(i0.9)
= —0.158 — 0.175i, G(i1.2) = —0.126 — 0.0773i.

Ys
+ PID(s) —Wto_ Gea(S) | Gpa(s) -‘» Gp1(s) w(s)

_ “ T

v

Figure P5.1

5.14 Tune the PID controller for the control system in Figure P5.1 and simulate the control
performance for the step setpoint change. Here, Gy(s) =4.0(1 + 0.35), Gpa(s) =exp
(=0.25)/(s + 1), Gp1(s) =exp(—0.25)/(s + 1)3.

d(s)
—»Q—»y“ PID(S) |——» O—»Co—»! Gy(s) o,
T Ggi(9)
Figure P5.2

5.15 Tune the PID controller for the control system in Figure P5.2 and simulate the control
performance for the step setpoint change and the step input disturbance.

(@) Gu(s) =6.36(1 +0.2245), Gy(s) = 2.0 exp(—0.15)/(3s - 1)(s + 1).
(b) Gp(s) = exp(—0.25)/s(s+ 1), Gai(s) = 0.19.

Proportional-Integral-Derivative Controller Tuning 199

References

Kwak, H.J., Sung, S.W. and Lee, 1. (2000) Stabilizability conditions and controller design for unstable processes.
Chemical Engineering Research and Design, 78, 549.

Lopez, A.M., Miller, C.L., Smith, C.L. and Murrill, PW. (1967) Controller tuning relationships based on integral
performance criteria, Instrumentation Technology, 14 (12), 72.

Morari, M. and Zafiriou, E. (1989) Robust Process Control, Prentice-Hall, Englewood Cliffs, NJ.

Sung, S.W.and Lee, I. (1996) Limitations and countermeasures of PID controllers. Industrial & Engineering Chemistry
Research, 35, 2596.

Sung, S.W., Lee, O.J., Yu, S. and Lee, I. (1996) Automatic tuning of PID controller using second order plus time delay
model. Journal of Chemical Engineering of Japan, 29, 990.

Ziegler, J.G. and Nichols, N.B. (1942) Optimum setting for automatic controllers, Transactions of the American
Society of Mechanical Engineers, 64, 759.

Bibliography

Seborg, D.E., Edgar, T.F. and Mellichamp, D.A. (1989) Process Dynamics and Control, John Wiley & Sons, Inc.
Stephanopoulos, G. (1984) Chemical Process Control - An Introduction to Theory and Practice, Prentice-Hall.

6

Dynamic Behavior of
Closed-Loop Control Systems

It is important to predict the stability and the robustness to uncertainties in the case that a
designed controller is applied to a process. This chapter defines the closed-loop transfer
function and explains the relationship between the stability and the roots of the characteristic
equation. Analysis tools for the Bode plot and the Nyquist plot are also introduced to predict the
closed-loop stability by checking the open-loop transfer function. Also, the gain margin and the
phase margin are defined to measure how much the closed-loop system is stable.

6.1 Closed-Loop Transfer Function and Characteristic Equation

A typical feedback control system has the structure shown in Figure 6.1. Here, u(s) and y(s) are
the controller output and the process output respectively. y,(s) and d(s) denote the setpoint and
the disturbance respectively. d;(s) and d,(s) are called the input disturbance and the output
disturbance respectively. G.(s) and G(s) denote the transfer function of the controller and the
process respectively. And Gg(s) is the transfer function between the disturbance of d(s) and
the output disturbance of d,(s). The step setpoint change means that y(s) is a step signal.
The step input disturbance and the step output disturbance means di(s) and d,(s) are step
signals respectively.

6.1.1 Closed-Loop Transfer Function

In Figure 6.1, the transfer function from y4(s) to y(s) is called the closed-loop transfer function
between y4(s) and y(s) because the loop is closed. Meanwhile, the transfer function from e(s) to
y(s) is called the open-loop transfer function because the loop is open. Consider the following to
derive the closed-loop transfer functions. The closed-loop transfer function from y(s) to y(s)
is (6.1) when the signals of di(s) and d,(s) are zero:

9(5) = Gu(5)G(5)e(s) = Gels)GI0x(5) ~(6)) = 3(s) = 1 Lor S nls) (6.1

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

202 Process Identification and PID Control

Gls) [« 2
d|(S) do(s)
Ys(8) + e(s) u(s)+ + y(s)
—_— G(9) G(s) —»
— + +

Figure 6.1 Typical feedback control system.

Equation (6.2) is the closed-loop transfer function from di(s) to y(s) when the signals of y,(s)
and d,(s) are zero:

y(s) = (Ge(s)e(s) +di(s))G(s) = Ge(s)G(s)(= y(s5)) + di(s)G(s)
G(s) (6.2)

di(s)

> =16 mew @

Equation (6.3) is the closed-loop transfer function from d(s) to y(s) when the signals of yy(s) and
di(s) are zero:

_ Ga(s)
~ 1+Ge(s)G(s)
(6.3)

d(s)

By the superposition rule, the closed-loop transfer function from y(s), di(s), d(s) to
y(s) is

G(s)
1 + Gc (S)G(S)

Ga(s)

di (S) —+ T(S)(;(S)d(s) (64)

6.1.2 Characteristic Equation

Note that all three closed-loop transfer functions have the same denominator of 1 + G.(s)G(s).
The characteristic equation is defined as 1 + G.(s)G(s) =0. The roots of the characteristic
equation correspond to the poles of the closed-loop transfer functions. So, the roots characterize
the closed-loop dynamics and stability. If the real parts of all the roots are negative or a single
root is located on the zero, then the closed-loop system is stable. If one of the real parts of
the roots is positive or there is a multiple root (such as a double root, triple root, etc.) located on
the zero, then the closed-loop system is unstable.

Dynamic Behavior of Closed-Loop Control Systems 203

Ys + 1 |1 yis)
—» —> 15(1+ESJ (S+1)3 »

T

Figure 6.2 PI control system.

Example 6.1
Consider the control system in Figure 6.2.
The characteristic equation of Figure 6.2 is

1 1 X
1+15({1+ — | ———=0=s(s+1)+1.5s+1/3=0 6.5
(3_0S) T (s+1) / 6.5)

The roots are —2.103, —0.369 + 0.9271, —0.369 — 0.927i and —0.159, which can be
straightforwardly calculated by the roots function of the MATLAB function (i.e. roots
([1332.51/3])). The real parts of all the roots are negative. So, the closed-loop system of
Figure 6.2 is stable. Also, the two roots show nonzero imaginary parts. So, the closed-loop
system will show an oscillatory response. For detailed descriptions on the relationship between
the poles and the response of the process, refer to Chapter 3.

6.2 Bode Stability Criterion

Chapter 3 explains how to draw the Bode plot and Nyquist plot for the given process. In this
section, the Bode plot and Nyquist plot are used to analyze the stability of the closed-loop
control system. If the signals of the closed-loop control system diverge as time increases, then
the system is called unstable. If all the signals converge, then it is called stable. The system is
called marginally stable if the signals show continuous cycling.

Consider the typical control system in Figure 6.3. Here, the transfer function from y(s) to y(s)
is called the closed-loop transfer function, denoted by G¢y (s). Meanwhile, the transfer function
from e(s) to y(s) is called the open-loop transfer function, denoted by Gy (s) = G.(5)G(s).

Ys(8) + ~ e(s) u(s)

Gu(9) y(s) .

G(s)

Figure 6.3 Block diagram of a typical closed-loop control system.

The Bode plot of the open-loop transfer function Goy (s) = G.(s)G(s) can be used to analyze
the stability of the closed-loop control system in Figure 6.3. Consider the following Bode
stability criterion.

6.2.1 Bode Stability Criterion

GoL(9) is strictly proper and has no unstable poles. Also, Gor(s) has only a single critical
frequency w. and a single gain crossover frequency w,. Then, the closed-loop control system in
Figure 6.3 is stable if |Gor (iw.)l < 1. Otherwise, it is unstable. Here, the critical frequency

204 Process Identification and PID Control

(phase crossover frequency) w. is defined as w. that satisfies /Gop (iw) = —m. The gain
crossover frequency w, is defined as w that satisfies |Goy (iw)l = 1.

A rigorous proof of the Bode stability criterion is omitted in this book. Instead, the Bode
stability criterion can be understood conceptually by the following arguments. Note that the
statements below are conceptually right. Strictly speaking, they are not complete from the
mathematical point of view.

Let us start from Iteration 0 with the assumption of y,(¢) =0. IterationO: assume that
e(t) =sin(w,t). Then, y(¢) becomes y(7) = —1Gor (iw)l sin(w.?) because e(r) = sin(w.?) goes
though the process dynamics that satisfy /Gy (iw.) = —n. Then, e(?) =G (iw.)l sin(w,1).
Iteration 1: y(¢) becomes y(f) = —|Goy (iw)I* sin(w) because e(f) =Gop (iwe)! sin(wt) goes
through the process dynamics. Then, e(t) =1Goy (iwo))? sin(w1). Iteration 2: y(f) becomes
y(t) = —IGOL(ia)C)I3 sin(w.!) because e(t)= IGOL(ia)C)I2 sin(w.?) goes through the process
dynamics. Then, e(?) = IGor(iw) sin(w,7). So, y(f) exponentially diverges if |IGop (iwo)l > 1.
y(¢) exponentially converges if |Gop(iw.)l < 1. If IGoy (iw)l = 1, then the magnitude of y(¢)
does not change (marginally stable).

Example 6.2
Consider the control system in Figure 6.4.

A

Ys P exp(-0.2s) | ¥(8)
= () K p EXPID.29 >

T_ (s+1)3

Figure 6.4 P control system.

The open-loop transfer function is Goy () = k. exp(—0.2s)/(s + 1)*. Then, the following
equations are obtained:

/Gor (iw) = —0.2w, —3tan ' (w,) = — 7 = w. = 1.408 (6.6)
. ke . ke
|GOL(1wC)| - W = |GOL(1wC)| - 5.151 (67)

The Bode plot of Ggy (iw) with respect to k. is shown in Figure 6.5. The scales of the y-axis
and the x-axis are log;((IGor(iw)l) and logo(w) in the amplitude ratio plot. The scales of the
y-axis and the x-axis are /Gop(iw) and log;o(w) in the phase-angle plot. For detailed
descriptions on how to draw the Bode plot, refer to Chapter 3.

From (6.7) and Figure 6.5, it is concluded on the basis of the Bode stability criterion that
the control system of Figure 6.4 is stable if k. < 5.151, unstable if k. > 5.151 and marginally
stable if k. = 5.151. Figure 6.6 shows the simulation results of the control system in Figure 6.4.
It confirms that the Bode stability criterion is correct. As expected, the frequency of
the oscillation (marginally stable) for k,=5.151 is w.=1.408 (equivalently, the period
is 2m/w,.).

Dynamic Behavior of Closed-Loop Control Systems

205

101 e < TeEE TR AR T
o e N
£ 40 = U\
9 : — ks = 2.151 .
=) C
g 101k k, =5.151
b5 S - k= 8.151
1072 L L Lol T A
1072 1071 100 101
0 T i
Qo
2 100 l
©
©
3
S 200 f i
o
-300 e oy P
1072 10’1 100 101
® Ve
Figure 6.5 Bode plot of the P control system of Figure 6.4.
3 —
sl k.=5.151 ‘
----- setpoint ;
2 o [— k=2.151
2
X<

Figure 6.6 Simulation results of the P control system of Figure 6.4.

Example 6.3

Consider the PID control system in Figure 6.7.

The open-loop transfer function is Gop(s) =2.5[1 + 1/(2.7s) + 0.675s] exp(—0.1s)/
(s + 1)3. The Bode plot of Gy (s) is shown in Figure 6.8.
The Bode plot shows that the control system is stable. Figure 6.9 shows the response of the
control system of Figure 6.7 for the step setpoint change, which confirms that the Bode stability
criterion is correct.

206 Process Identification and PID Control

10}

-15

Figure 6.6 (Continued).

A

Y 30—l 25[14-1 +0675s o exp(0.1s) | ¥(s) |
2.7s (s+1)3

Figure 6.7 PID control system.

k)
®
o 100
©
2
2
€
<C
10_2 L Lol L Lol L L W) L
1072 1071 100 10!
0 T T T

Phase angle
o
o
o
T
1

7400 L P A | " Lol " L Lol
1072 10! 100 10!
[0)

Figure 6.8 Bode plot of the PID control system of Figure 6.7.

Dynamic Behavior of Closed-Loop Control Systems 207

1.4

process output
——— setpoint

0.8

0.6

YD), ys(t)

04r

0.2

2.5

Figure 6.9 Simulation results of the PID control system of Figure 6.7.

6.3 Nyquist Stability Criterion

The Nyquist plot of the open-loop transfer function Gy (s) = G.(s)G(s) can be used to analyze
the stability of the closed-loop control system, as with the Bode plot. Consider the following
Nyquist stability criterion.

6.3.1 Nyquist Stability Criterion

GoL(s) s strictly proper and has no unstable pole—zero cancellations. The Nyquist plot of Gy (s)
encircles the (—1, 0) point N times in the clockwise direction (N is negative for counterclock-
wise). Let P be the number of RHP poles of Goy (s). Then, Z= N + Pisthe number of RHP roots
of the characteristic equation. The closed-loop system is stable if and only if Z=0.

Figure 6.10 shows the Nyquist plot for the control system in Figure 6.4. For detailed
descriptions on how to draw the Nyquist plot, refer to Chapter 3.

P =0 for the P control system of Figure 6.4 and the Nyquist plot encircles (—1, 0) one time
(N=1)ifk.>5.151.S0,Z=N + P =1for k. > 5.151, which means that the control system is

208 Process Identification and PID Control

Figure 6.10 Nyquist plot for the control system of Figure 6.4.

unstable by the Nyquist stability criterion. N=0,P=0and Z=N + P =0 for k. <5.151. So,
the control system is stable for k. < 5.151 by the Nyquist stability criterion.

Figure 6.11 shows the Nyquist plot for the control system in Figure 6.7.

P =0 for the PID control system of Figure 6.7 and N =0 as shown in Figure 6.11. So, the
control system is stable by the Nyquist stability criterion. The same conclusion as that of the
Bode stability criterion is obtained.

0
1tk
3 2}
S
£
3t
4|
-5 ! ! ! !
-1 05 0 0.5 1
Re(Go|)

Figure 6.11 Nyquist plot for the control system of Figure 6.7.

Example 6.4
Consider the control system in Figure 6.12.

The open-loop transfer function is Gor (s) = 3 exp(—0.35)/(3s — 1). The MATLAB code to
plot the Nyquist plot of the open-loop transfer function, the Nyquist plot and the simulation

Dynamic Behavior of Closed-Loop Control Systems 209

Yo 3030 || @m035) |19
B 3s-1

Figure 6.12 P control system.

result of the closed-loop control system of Figure 6.12 are shown in Table 6.1, Figures 6.13
and Figure 6.14 respectively. Note that Goy (s) has one RHP pole and the Nyquist plot starts at
the (—3, 0) point and encircles the (—1, 0) point in the counterclockwise direction. That is,
P =1 and N= —1. Then, on the basis of Z=N + P =0, it can be concluded that the control

Table 6.1 MATLAB code to plot the Nyquist plot of Example 6.4.

nyquist _exl.m g_nyquist_exl.m
clear; function [g]l=g_nyquist_ex1l (w)
w_max=30.0; delw=0.01; s=i*w;
n=round (w_max/delw) ; g=3.0*exp (-0.3*s)/(3*s-1);
w=0; G=g_nyquist_ex1l (w); m=1; end

W(m)=w; R(m)=real (G) ;
I (m)=1imag(G) ;
form=2:n
w=m*delw;
G=g_nyquist_exl (w) ;
W (m)=m*delw; R(m)=real (G);
I (m)=1imag(G) ;
end
figure (1) ; plot(R,I);

command window
>>nyquist_exl

-14 1 1 1 1 1 1
35 3 25 -2 15 A1 -0.5 0 0.5

Re(Goy)

Figure 6.13 Nyquist plot for the control system of Figure 6.12.

210 Process Identification and PID Control

3 [T T T T]
2k .
—_ 1 B T
s
oH]
1tk .
1 1 1 1
0 5 10 15 20 25
t
15} JRPREe e sseersesessssssesssessssssssssssesssssssssseans -
b —i
05} g
Ys(t)
eeeeene (1)
0 1 1 1 1
0 5 10 15 20 25

t

Figure 6.14 Simulation results of the P control system of Figure 6.12.

system is stable. The simulation result of the control system in Figure 6.14 confirms that the
Nyquist stability criterion is correct. In this case, the Bode stability criterion cannot be applied
because the open-loop process has an unstable pole.

6.4 Gain Margin and Phase Margin

The gain margin (GM) and the phase margin (PM) are quantitative measures to indicate how
much the control system is stable. GM is defined as the reciprocal of the amplitude ratio of the
open-loop transfer function at the critical frequency. That is, GM = 1/IGoy (iw.)l. PM is defined
as the phase difference between —m and the phase angle of the open-loop transfer function at the
gain crossover frequency. That is, PM = /G (iw,) + 7. The control system is more stable as
GM and PM increase.

Figures 6.15 and 6.16 show GM and PM in the Bode plot and the Nyquist plot.

Dynamic Behavior of Closed-Loop Control Systems 211

102 T

_+______
<— |
5 -
Q |

>

[0)

=<

Amplitude ratio
<
o

101

-100 -

R |

200F " """ T Tttt T T T T T T T

Phase angle

-300 L Lol L Lo

Figure 6.15 GM and PM in the Bode plot.

| Re(wg),Im(wy)

e

1Go (iwp)l=1/GM |

Im(Go\)
o
—

-0.5 | 1
PM '
[I N UZ, AW T, e f e]
1 1
I 1 1
-1.5¢ : 1 : 1
I 1 1
! o I 1 1 <
Re(aghim(ap) | | | |
25 ! ! ! ! ! !
-2 -1 0 1 2
Re(Go\)

Figure 6.16 GM and PM in the Nyquist plot.

Example 6.5
Estimate the GM and the PM for the control system in Figure 6.4 with k. =2.151.

Solution The open-loop transfer function is Gop (s) =2.151 exp(—0.25)/(s + 1)>. Then, the
critical frequency is obtained by solving

/Go(iw.) = —0.20, — 3tan~ ' (0.) = — 7 or Im(Goy (iw.)) = 0.0 = w. = 1.408 (6.8)

212 Process Identification and PID Control

And, the gain crossover frequency is obtained by solving

2.151

|Gov(iwg)| = m

=0, = 0.8164 (6.9)

Because IGop (iw)l = 0.4176, GM = 1/IGoy (iw)l = 2.3945. /Goy (iwg) = arctan 2(—0.7981,
—0.6023) = —2.2173 is obtained from Gy (iw,) = —0.6023 —i0.7981. So, PM = — 2.2173 +
1=0.9243 =52.96°.

Example 6.6
Estimate the GM and the PM for the control system in Figure 6.7.

Solution The open-loop transfer function is Gop(s)=2.5[1 + 1/(2.7s) + 0.675s] exp-
(—0.15)/(s + 1)*. Then, the critical frequency is obtained by solving

m(Goy(iw:)) = 0.0 = w. = 3.836 (6.10)
And the gain crossover frequency is obtained by solving
|Go(iwg)| = 1 = wy = 0.936 (6.11)

Because |Goy (iw)l = 0.1078, GM = 1/IGoy (iwe)l = 9.278. /Goy (iw,) = arctan 2(—0.8532,
—0.5208) = —2.1188 is obtained from Go (iwy) = —0.5208 —i0.8532. So, PM = —2.1188 +
T =1.0228 =58.60°.

Problems

6.1 Obtain the characteristic equation for the control system in Figure P6.1 and determine if it
is stable or unstable. Also, explain the effects of the parameters of the PID controller on the
stability of the closed-loop system. Here, the process is Gy(s) = 1/(s + D,

s +

—»f_—» G(8) > Gp(9)

Figure P6.1

y(s)

@) Ge(s)=15

(

() Ge(s) =3. 0(1 + %)
(
(145

©) Ge(s)=3.0

d) Ge(s)=3.0

Dynamic Behavior of Closed-Loop Control Systems 213

6.2 Determine if the closed-loop system of Figure P6.1 is stable or unstable using the Bode
and Nyquist stability criterion. If it is stable, find the GM and PM.

_exp(—0.5s)

@ Gy(s) Gl Ge(s) =15

b) Gyls) = exp(= (()fj)f)l_f 029 Go(s) =15 (1 + ﬁ)

© Gyls) = %, Ge(s) = 10.0

A Gpls) = w, Ge(s) = 1.5(1+0.55)

© Gyls) =P (()ffl()lf 059) " Gufs) = 2.0(1 + ﬁ +O.7s>
) Gpls) = "’;‘(’;‘i;j) Gels) = 0.19

6.3 Determine if the closed-loop system of Figure P6.1 is stable or unstable.

2.0 exp(—0.1s) B
(a) G[,(S) = m, GC(S) = 636(1 +0224S)
~exp(—0.2s) o) =

6.4 Simulate Problem 6.2 and confirm if the closed-loop response coincides with your
expectation.

6.5 Simulate Problem 6.3 and confirm if the closed-loop response coincides with your
expectation.

References

Seborg, D.E., Edgar, T.F. and Mellichamp, D.A. (1989) Process Dynamics and Control, John Wiley & Sons, Inc.
Stephanopoulos, G. (1984) Chemical Process Control - An Introduction to Theory and Practice, Prentice-Hall.

7

Enhanced Control Strategies

7.1 Cascade Control

Cascade control uses an additional internal feedback loop to reject disturbances more
effectively. The typical structure of a cascade control is shown in Figure 7.1a. It is composed
of a primary (master) controller G(s) and a secondary (slave) controller G.»(s). Gp(s) and
Gpo(s) are the primary process and the secondary process respectively. The output y,(s) of the
secondary process Gp,(s) is measurable. u;(s) and u(s) are the control outputs of the primary
controller and the secondary controller respectively. yg;(s) and ys,(s) are the setpoints of the
primary controller and the secondary controller respectively. Note that the control output of the
primary controller is the setpoint of the secondary controller; that is, #;(s) = y(S).

In Figure 7.1a, the disturbance d(¢) directly affects y,(¢). Meanwhile, d(#) indirectly affects
y1(#) because it goes through the dynamics of G,,(s). The cascade control system in Figure 7.1a
can detect the disturbance more quickly by measuring y,(#), compared with the conventional
control system in Figure 7.1b. If the dynamics of G,(s) are fast, then the internal feedback loop
(the secondary controller) can reject the disturbance quickly before the disturbance affects
y1(?), resulting in an improved disturbance rejection performance. Meanwhile, the conven-
tional control system inevitably shows a slow response to the disturbance because it measures
only y(?). The following three conditions should be satisfied for a successful cascade control:

1. The output of the secondary process y,(s) is measurable.

2. The disturbance affects the output of the secondary process y,(s) more quickly than the
output of the primary process y;(s).

3. The dynamics of the secondary process are fast enough for the secondary control action to
remove the effect of the disturbance quickly.

Figure 7.2 compares a conventional PID controller and cascade control, wherein Gy, (s) =
exp(—0.1s)/(s + 1)3, Gpo(s) = exp(—0.15)/(0.55 + 1), Gci(s)=2.5(1 + 1/2.7s + 0.675s),
Go(s) =5.0 and d(s) = 1/s. As shown in Figure 7.2, the cascade control rejects the disturbance
more quickly than the conventional control because u,(f) of the cascade control quickly
attenuates the disturbance.

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

216

Process Identification and PID Control

d
Ysi U= Ys2 up +l Y2 32
—:Q—» Gy >(- Geo » Gp —:O » Gy >
(a)
d
Ys1 Uy +l Yo Y1
G » G G >
(b)

Figure 7.1 (a) Cascade control system and (b) conventional control system.

0.4

0.3¢

0.2¢

y(t)-conventional PID
- ¥s(D

— y(f)-cascade control

-0.1 R : ' : '
0 5 10 15 20 25 30
t
i \\,
—0.5¢ %
e 4l T e e eterspeaeem e
3 K
P L uy(f)-conventional PID
uy(f)-cascade
-2)
0 5 10 15 20 25 30
t

Figure 7.2 Control performances of a cascade control and a conventional PID control.

Enhanced Control Strategies 217

primary controller

cooling water out
<

<

A

1
1
|
cooling waterin |
1
T
|
1
1
1

Ui =Ys2

+————

reactor

é
-
@

secondary controller

Figure 7.3 Cascade control for an exothermic batch reactor.

Figure 7.3 shows a typical cascade control for an exothermic batch reactor, where TTand TC
represent the temperature transmitter and the temperature controller respectively. The input
and the output of the primary process are y,(#) and y;(?) respectively. u,(¢) and y,() are the input
and the output of the secondary process respectively.

In Figure 7.3, the disturbance is the temperature variation of the cooling water. This directly
affects the temperature y,(#) of the cooling water in the jacket. u,(7) affects y,(¢) quickly. So, the
secondary controller can reject the disturbance quickly before the disturbance affects y;(?),
resulting in excellent disturbance rejection performances.

Example 7.1
Simulate the cascade control system of Figure 7.2.

Solution The MATLAB code to simulate Figure 7.2 is shown in Table 7.1.

7.2 Time-Delay Compensators

If the time delay of the process is long, then there is no choice but to wait as long as the time
delay to detect the effects of the present control action on the process output. Then, an
aggressive control action is not possible because there is no chance to correct the side effects
of the aggressive present action for the long time. So, the time delay is one of the most serious
bottlenecks in improving control performance. Fortunately, if a model is available, then the
effects of the present control action on the future process output can be predicted without
waiting as long as the time delay by solving the differential equation of the model using a
computer. In this section, the two approaches of the Smith predictor (Smith, 1957) and the
decoupled predictor (Sung and Lee, 1996) for the time-delay compensation are introduced.

7.2.1 Smith Predictor

Consider the control system shown in Figure 7.4, where G*(s) is the time-delay-free process
and G} (s) is the time-delay-free model. G(s) = exp(—6s)G™(s) is the process. G(s) is usually

218

Process Identification and PID Control

Table 7.1 MATLAB code to simulate the cascade control system of Figure 7.2.
cascade_exl.m cc_processl.m
clear; function [next_x,y]=cc_processl

tf=30; delt=0.05;
uul=zeros (1,500); uu2=zeros
(1,500);
yy2=zeros (1,500);
xl=zeros(3,1); x2=zeros(1l,1);
tf_k=round(tf/delt);
y1=0.0; y1b=0.0; s1=0.0; ys1=0.0;
yslb=0.0;
y2=0.0; y2b=0.0;
kcl=2.5; til=2.7; tdl=til/4;
$primary PID
kc2=5.0; $secondary P
for k=1:tf_k
t=(k-1) *delt;
T (k)=t; Y1(k)=yl; Y2 (k)=y2;
Ysl (k)=ysl;
Ul (k)=uul (500); U2 (k)=uu2 (500) ;
for i=1:499 uul (i)=uul (i+1); end
for i=1:499 uu2 (1)=uu2 (i+1); end
for i=1:499 yy2 (i)=yy2 (i+1); end
sl=sl+(kcl/til)* (ysl-yl)*delt;
uul (500)=kcl* (ysl-y1l)+sl
+kcl*tdl* (ysl-yl-yslb+ylb) /delt;
uu2 (500)=kc2* (uul (500) -y2) ;
yy2(500)=y2;
ylb=yl; yslb=ysl;
[x2,y2]=cc_process2(x2,delt,
uu2); %$cascade
% [x2,y2]=cc_process2 (x2,delt,
uul) ; $conventional
y2=y2+1.0; %disturbance
[x1,yl]=cc_processl (x1l,delt,
yy2);
end
figure (1) ; hold on; plot (T, Y1,
T,Ysl);
figure (2) ; hold on; plot(T,Ul);

(1
(1

(x,delt,u);
subdelt=delt/5; n=round
(delt/subdelt) ;
A=[00-1;10-3;01-31;
B=[1;0;01]1;C=[001]; delay=0.1;
delay_k=round(delay/delt+
0.00001) ;

for i=1:n

dx=A*x+B*u (500-delay_k);
x=x+dx*subdelt;

end

next_x=x; y=C*x;

return

cc_process2.m
function [next_x,y]l=cc_process?2
(x,delt,u);
subdelt=delt/5; n=round
(delt/subdelt) ;
A=[-2]; B=[2]; C=[1]; delay=0.1;
delay_k=round(delay/delt+
0.00001) ;
for i=1:n
dx=A*x+B*u (500-delay_k);
x=x+dx*subdelt;
end
next_x=x; y=C*x;
return

command window
>> cascade_exl1

process

u(s)

v

ys)

exp(-0s) — G*(s)

JAC) +C Gu(9)
REEE J

Gn(9)

Figure 7.4 Predictive control using a process model.

Enhanced Control Strategies 219

the PID controller. The model output y, (s) is the simulated time-delay-free process output.
That is, y (s) corresponds to y*(s) = G*(s)u(s). If the model is exact (that is, G (s) = G*(s)),
then this is equivalent to control of the time-delay-free process, as shown Figure 7.5.

Ys(s) +C 6.(9) us) &9 v exp(_68) ¥(s)

A

Figure 7.5 An equivalent control system to Figure 7.4.

Here, the process output is the delayed time-delay-free output; that is, y(¢) = y*(z — 0). Note
that the controller G.(s) uses the signal y*(s) rather than y(s). Then, it is possible to detect the
effects of the present control action on the process output without waiting as long as the time
delay. So, the controller can be tuned strongly because there is no time delay in the feedback
loop, resulting in fast closed-loop responses.

Practically, because there are always modeling errors, a feedback loop to compensate for the
modeling error should be included, as shown in Figure 7.6. The feedback loop decreases the
setpoint as much as the modeling error, resulting in no offset.

process
+
ﬁ»@—» e [expos M G*(9) o
Yin(S) &) model ¥
¢ m(S Ym(S
h e exXp(-0nS) | Gnl®) {j

modeling error

Figure 7.6 Smith predictor.

Having obtained the Smith predictor in Figure 7.6, how is it tuned? The following
characteristic equation of the Smith predictor can be easily derived from Figure 7.6:

1+ Ge(5)G () + Ge(5)(Gp(s) = G(s)) = 1+ Ge(5)(Gry () + Gp(s) = Gm(s)) =0 (7.1)

where G(s) =exp(—0s)G™(s) and Gy (s) = exp(—60ms)G? (s) are the process and the model
respectively. If no modeling error is assumed (thatis, G,(s)—G,,,(s) = 0), then the controller G.(s)
should be tuned on the basis of the time-delay-free model G7, (s). Note that G, (s) has no time
delay. Then, infinite controller gains will be assigned to G.(s) by the usual PID tuning rules if
G, (s) is a low-order model. Clearly, the infinite gains are not desirable, because the huge gains
will destabilize the closed-loop system by amplifying the modeling error, as shownin (7.1). For a
reasonable tuning, the modeling error should be considered. Lee et al. 1999 approximate

220 Process Identification and PID Control

G, (8) + Gp(s) — Gm(s) in (7.1) to the equivalent gain plus time delay like G} (s) + Gy (s) —
G (s) = G} (5)keqexp(—0eqs) to consider the modeling error. Then, reasonable controller
gains by applying the usual PID tuning rules to keq G, (s)exp(—0cqS), keq > 1.0 and 6.4 > 0.0.
keq and 0 are adjustable parameters for the tuning of the Smith predictor. A more conservative
controller will be obtained as the equivalent gain and the equivalent time delay are increased.
In the implementation step, it is recommended to use keq G}, (5) and ko, G, (s)exp(— (0, + Oeq)s)
for the time-delay-free model and the process model of the Smith predictor in Figure 7.6.
The recommendation is for a conservative operation of the Smith predictor.

The Smith predictor shows a good setpoint tracking performance because G.(s) is strongly
tuned and the time-delay-free model output is used. Note that (7.1) becomes 1 + G.(s)G? (s) =0
if there are no modeling errors. So, it is clear that G.(s) can be strongly tuned because G () has no
time delay. But, it should be noted that the modeling error of G,(s) — Gi(s) is amplified by the high-
gain controller of G.(s), as shown in (7.1). As a result, the closed-loop stability tends to be very
sensitive to the modeling error G,(s) — Gy(s). Then, a small modeling error can make the closed-
loop system unstable.

In summary, the Smith predictor can provide an excellent setpoint tracking performance if
the process model is accurate. But, a small model error can destabilize the closed-loop system
if the gains of the controller are tuned too strongly. The Smith predictor can be tuned in a
reasonable way by considering the modeling error in the form of the equivalent gain plus time
delay.

Example 7.2

Simulate the Smith predictor of Figure 7.6 with G(s) = exp(—l.Ss)/(s2 4+ 25 + 1), Gu(s) =
0.95 exp(—1.7s)/(s* + 2.25 + 1). Assume 7% modeling error for the equivalent gain and
equivalent time delay; that is, G, (s) + G, (s) — G (s) = G}, (s5)1.07exp(—1.7 x 0.07s). Com-
pare the Smith predictor with the conventional PID controller.

Solution G, (s)1.07 exp(—1.7 x 0.07s) = 0.95 x 1.07exp(—1.7 x 0.07s)/(s* +2.25 + 1)
should be used to tune the PID controller of the Smith predictor. Then, the ITAE-2 tuning rule
provides G(s) =8.455(1 + 1/2.270s + 0.456s), and Gy,(s) =0.95 x 1.07 exp(—1.7 x 1.07s)/
(s* + 225+ 1) and G (s) = 0.95 x 1.07exp(—0.0s) /(s> +2.2s+ 1) should be used for
the models of the Smith predictor. The conventional PID controller designed by the ITAE-2
tuning rule based on the model G,,,(s) = 0.95 exp(—1.7s)/(s2 + 2.25 + 1)isG(s) =1.027(1 +
1/2.560s + 0.751s). The MATLAB code for simulation and the simulation results are shown
in Table 7.2 and Figure 7.7 respectively. Note that the closed-loop response is very fast because
the parameters of the PID controller of the Smith predictor can be tuned strongly, whereas the
conventional PID controller shows a slow closed-loop response, as shown in Figure 7.6.

7.2.2 Time-Delay Compensator with Decoupled Control Structure

The high-gain controller of the Smith predictor amplifies the modeling error, possibly, resulting
in unstable closed-loop responses for small errors. To overcome the problem, the amplication
phenomenon by the high-gain controller should be removed. The time delay compensation
with decoupled control structure can be a good candidate to solve the problem (Sung and
Lee, 1996).

Enhanced Control Strategies

221

Table 7.2 MATLAB code to simulate the Smith predictor.

smith_exl.m
clear;
tf=15; delt=0.01; u=zeros (1,500);

x=zeros (2,1); xm=zeros (2,1); xm_free=zeros(2,1);

tf_k=round (tf/delt+0.0000001) ;

s=0.0; ys=1.0; ysb=0.0; y=0.0; yb=0.0;

ym=0.0; ymb=0.0; ym_free=0.0; ymb_free=0.0;
kc=8.455; ti=2.270; td=0.456; $Smith

$kc=1.027; ti=2.560; td=0.751; $Conventional PID

for k=1:tf_k

t=(k-1)*delt; T(k)=t; Y(k)=y; ¥Ys(k)=ys; U(k)=u(500) ;

for i=1:499%9u(i)=u(i+1); end
e_pid=ys-y+ym-ym_free;
eb_pid=ysb-yb+ymb-ymb_free;
s=s+ (kc/ti) *e_pid*delt;

u(500)=kc*e_pid+s+kc*td* (e_pid-eb_pid) /delt;
yb=y; ymb=ym; ymb_free=ym_free; ysb=ys;

% Remove the below two lines for the conventional PID
[xm, ym]=smith_model_exl (xm,delt,u); $ model
[xm_free,ym_free]=smith_model_delay_free_exl (xm_free,delt,u);
[x,y]=smith_process_exl (x,delt,u); $ process

end

figure (1) ; plot(T,Y¥s,T,Y); hold on;
$figure (1) ; plot(T,Y); hold on;
figure (2); plot (T,U); hold on;
return

smith_process_exl.m

function [next_x,yl=smith_process_
exl (x,delt,u);

subdelt=delt/5; n=round(delt/
subdelt) ;

A=[0-1;1-2.0]1;B=[1.00;0];C=[017;

delay=1.80;

delay_k=round(delay/delt) ;

for i=1:n
dx=A*x+B*u (500-delay_Xk);
x=x+dx*subdelt;

end

next_x=x; y=C*x;

return

smith _model_exl.m

function
[next_x,y]=smith_model_
exl (x,delt,u);
subdelt=delt/5; n=round (delt/
subdelt) ;
A=[0-1; 1-2.2]; B=[0.95*%1.07; 0];
C=[01]; delay=1.7*1.07;
delay_k=round (delay/delt
+0.00001) ;
for i=1:n
dx=A*x+B*u (500-delay_Xk) ;
x=x+dx*subdelt;
end
next_x=x; y=C*x;
return

smith_model_delay_free.m

function

command window
>> smith_ex1

222 Process Identification and PID Control

Table 7.2 (Continued)

[next_x,y]l=smith_model_
delay_free_exl(x,delt,u);
subdelt=delt/5; n=round(delt/
subdelt) ;
A=[0-1;1-2.2]1; B=[0.95*1.07; 0];
C=[017];
for i=1:n
dx=A*x+B*u (500) ;
x=x+dx*subdelt;
end
next_x=x; y=C*x;
return

1.4
1.2} -
] B A N ——
! :-
0.8} I 4
= 06 I
' I ¥s(D)
[
0.4r i’ ——— y()-Smith predictor | T
P A y(t-conventional PID | |
[}
0 '- 1 1
0 5 10 15
t
5
A
'":::_h\'::...._i_-_-_ﬂgnm-—--"u-u ------- .y ————————
ot s i
i
i —---—- (1)-Smith predictor
5 ,‘ --=-e---- y(f)-conventional PID
5 J
-10 - :
0 5 10 15

t

Figure 7.7 Control performances of the Smith predictor and the conventional PID controller in

Example 7.2.

Enhanced Control Strategies 223

Consider the control structure shown in Figure 7.8. This is composed of two PID
controllers, a time-delay-free model and a process model, where y(s), ym(s) and y, (s) denote
the process output, the model output and the time-delay-free model output respectively. d(s) is
the input disturbance. The left-hand side is for the setpoint change. y,(s) corresponds to the
process output by the setpoint change and then y(s) — y,,(s) corresponds to the process output
by the disturbance. So, G (s), for which the setpoint is yy(s), controls the time-delay-free
model output of y* (s). G, 4(s), for which the setpoint is zero, rejects the disturbance and the
modeling error.

Setpoint change Disturbance rejection

¥s(9) . !
+ - Gou(9) Ug(s) : Uy(s) Godls) + 0
. ! d(s)
ym(s) '
Gr(s) OO0 G Al
E s G.(9) Ym(S)
< E >

Figure 7.8 Time-delay compensation using a decoupled control structure.

Consider the two closed-loops in Figure 7.8. Clearly, the two closed-loops are decoupled from
the stability point of view. The first closed-loop for the setpoint change includes only G, (s) and
G, (s) and the characteristic equation is 1 + G, s(s)G%, (s) = 0. So, the controller G, 4(s) should
be tuned on the basis of G, (s). Then, the tuning parameters would be strongly tuned because
G (s) is the time-delay-free model. Meanwhile, the second closed-loop for the disturbance
rejection includes only G.4(s) and Gy(s) and the characteristic equation is 1 + G 4(s)-
Gp(s) =0. So, the controller G, 4(s) should be tuned on the basis of the process model G (s).
Then, the controller G, 4(s) would be tuned in a conservative way because G,(s) includes
the time delay. Now, it is clear that the amplication phenomenon of the modeling error
(Gp(s) — Gm(s)) by the high-gain controller in the Smith predctor is completely removed
by the control structure of Figure 7.8 because it manipulates the disturbance rejction using a
low-gain controller G, 4(s). It is concluded that the time-delay compensator of Figure 7.8 is
superior to the Smith predictor of Figure 7.6.

Example 7.3

Simulate the Smith predictor and the decoupled time-delay compensator of Figure 7.8 with
G(s):exp(fl.95s)/(s2 + 2s + 1), Gu(s)=0.95 exp(fl.7s)/(s2 + 2.2s + 1). Assume 3%
modeling error for the equivalent gain and equivalent time delay; that is, G, (s) + Gp(s) —
Gm(s) =~ G (s)1.03exp(—1.7 x 0.03s).

Solution G (s)1.03exp(—1.7 x 0.03s) = 0.95 x 1.03exp(—1.7 x 0.03s)/(s* +2.2s + 1)
is used to tune G.(s) in Figure 7.8 and G.(s) in Figure 7.6. Then, the ITAE-2-setpoint
tuning rule provides G.(s) = 18.29(1 + 1/2.265s + 0.436s) for Figure 7.6 and G, 4(s) = 18.29

224 Process Identification and PID Control

(1 4 1/2.265s + 0.436s) for Figure 7.8, and G,(s) =0.95 x 1.03 exp(—1.7 x 1.035)/(32 +

225 + 1) and G (s) = 0.95 x 1.03exp(—0.0s) /(s> +2.25+ 1) are used for the models in
Figures 7.6 and 7.8. G, 4(s) designed by the ITAE-2-disturbance tuning rule based on the
model G(s) = 0.95 x 1.0exp(—1.7 x 1.03s)/(s* 4+ 2.25 + 1)is G.(s) = 1.261(1 + 1/2.370s +

0.878s). The MATLAB code for simulation is shown in Table 7.3. Figure 7.9 confirms a poor
robustness of the Smith predictor to the modeling error. The decoupled time-delay compensa-
tor of Figure 7.8 shows acceptable robustness because the setpoint tracking problem and the
disturbance (modeling error) rejection problem are decoupled.

Table 7.3 MATLAB code to simulate the decoupled time-delay compensator in Example 7.3.

delay_compensator_exl.m

clear;
tf=20; delt=0.005; tf_k=round(tf/delt+0.0000001) ;
cont_outl=zeros(1,500); $control ouputl
cont_out2=zeros(1,500); $control ouput2
xl=zeros(2,1); x2=zeros(2,1); x3=zeros(2,1);
y=0.0; yb=0.0; s1=0.0; yset=1.0; ysb=0.0; ys=0.0;
ym=0.0; ymb=0.0; ym_star=0.0; ymb_star=0.0; s2=0.0;
kcl1=18.285; til=2.265; tdl=0.436;
kc2=1.261; ti2=2.370; td2=0.878;
for k=1:tf_k

t=(k-1) *delt; T(k)=t; Y1 (k)=ym; Y2 (k)=y;

ys=yset; ¥Ys(k)=ys; I1(k)=sl; I2(k)=s2;

Ul (k) =cont_outl (500) ;

U2 (k)=cont_out2 (500) ;

for i=1:499

cont_outl (i)=cont_outl (i+1);
cont_out2 (i)=cont_out2 (i+1);

end

sl=sl+(kcl/til)* (ys—-ym_star) *delt;

cont_outl (500)=kcl* (ys-ym_star)+sl+kcl*tdl* (ys-ym_star-ysb+ymb_

star) /delt;

s2=s2+ (kc2/ti2)* (ym-y) *delt;

cont_out2 (500)=kc2* (ym-y) +s2+kc2*td2* (ym-y-ymb+yb) /delt+cont_outl

(500) ;

ymb=ym; ysb=ys; yb=y; ymb_star=ym_star;

[x2,y]=compensator_process_exl (x2,delt,cont_out2);

[x1, ym]=compensator_model_exl (x1,delt,cont_outl);

[x3,ym_star]=compensator_model_star_exl (x3,delt,cont_outl);
end
figure (1) ; hold on; plot(T,Y¥s,T,Y2)
figure (2) ; hold on; plot(T,U2)

compensator_process_exl.m compensator_model_exl.m
function function
[next_x,y]=compensator_ [next_x,y]=compensator_
process_exl (x,delt,u); model_ex1 (x,delt,u);

subdelt=delt; n=round subdelt=delt; n=round

Enhanced Control Strategies 225

Table 7.3 (Continued)

(delt/subdelt) ; (delt/subdelt) ;
A=[0-1; 1-2.0]; B=[1.0; 0]; A=[0-1; 1-2.2]; B=[0.95%1.03; 0];
C=[01]; delay=1.95; C=[01]; delay=1.7*1.03;
delay_k=round(delay/delt+ delay_k=round(delay/delt
0.00001) ; +0.00001) ;
for i=1:n for i=1:n
dx=A*x+B*u (500-delay_k); dx=A*x+B*u (500-delay_k);
x=xX+dx*subdelt; x=x+dx*subdelt;
end end
next_x=x; yo=C*x; y=yo; next_x=x; yo=C*x; y=yo;
return return
compensator_model_star_exl command window
function [next_x,y]=compensator_ >>delay_compensator_exl

model_star_exl (x,delt,u);
subdelt=delt; n=round
(delt/subdelt) ;
A=[0-1; 1-2.2]; B=[0.95*%1.03; 0];
C=[01]; delay=0;
delay_k=round (delay/delt+
0.00001) ;
for i=1:n
dx=A*x+B*u (500-delay_k) ;
x=x+dx*subdelt;
end
next_x=x; yo=C*x; y=yo;
return

7.3 Gain Scheduling

Gain scheduling is used to incorporate the variation of the process dynamics according to the
variation of the operating region. For example, consider the following nonlinear process:

rd{d—(tt) +y(t) = ku(t —0) (7.2)

where k=ko + k1y(f), t=2.2 + 0.1u(¢) and 6 is constant. Equation (7.2) is a nonlinear
FOPTD process. It has a nonlinear static gain of k =k + k;y(¢), which is a function of the
process output. Note that the static gain changes (not constant) when the process output
moves from one operating region to another operating region, resulting in different dynamic
behaviors. Then, how to tune the PID controller? Consider the IMC tuning rule in Section 5.4.
This determines the proportional gain by kk. = (2 + 6)/2(1 + 6). Then, the proportional gain
iske=Q2 + O)Rk(A + 6)=(2 + 0)2(ko + k1y())(4 + 6), which changes according to the
operating region. This kind of setting is called gain scheduling. The same approach can be
applied to a nonlinear time constant. That is, the IMC tuning rule provides the tuning

Process Identification and PID Control

226
2 -
Ys(t)
PR IELLLIEEEE y(1)-Smith predictor
15} o ————— y(t)-decoupled compensator | |
g i
§¥
0.5¢f 1
0 : L ; ;
0 5 10 15 20
t
--------- u(f)-Smith predictor H
----- u(t)-decoupled compensator
5} T T] T
g off i
I
]
1
K :
.
1 H
1 :
I H
I F : :
_10lt : , B HH T i H i
0 5 10 15 20

t

Figure 7.9 Control results of a decoupled time-delay compensator and a Smith predictor.

parameters 7; = T+ 6/2 = 2.2+ 0.1u(t) + 6/2 because the time constant and the time
delay of the process are 2.2 + 0.1u(¢) and 6. As a result, the PID controller with a gain
scheduling of k.=[2(2.2 + 0.1u(?)) + 01/2(ko + kiy())(A + 6), 7, = 2.2+ 0.1u(z) + 6/2
should be used to control the nonlinear process of (7.2) to compensate for the nonlinearity

of the process.
Gain scheduling can be applied to the case where the nonlinearity of the process is described

by a piece-wise function. For example, assume that the process is described by the piece-wise
FOPTD model of the following three equations:

k=1, t=1, 6=02 fory({)<02 (7.3)
k=12, 1=09, 06=03 for0.2<y(r)<04 (7.4)

k=15 ©=07, 6=035 for0.4<y(r) (7.5)

Enhanced Control Strategies 227

Then, the following three tuning parameter sets by the IMC tuning rule with 4 = 0.256 should
be used:

ke=44, =11, t4=0091 fory(f)<0.2 (7.6)
ke =233, 1,=105 14=0.129 for0.2<y(r)<0.4 (1.7)
ke=1373, 17, =0875, 14=0.140 for0.4 < y() (7.8)

Example 7.4
Simulate the control performance of a PID controller with gain scheduling for the following
nonlinear process for the unit step setpoint change:

(1 —O.ly(l))d):l—(tt) +y(f) = (140.5y(¢))u(t — 0.3) (7.9)

Solution 1In (7.9), the time constant is T =1 — 0.1y(¢) and the gainis k=1 + 0.5y(¢). Let us
approximate them using the following piece-wise FOPTD model:

k=11, 1=098, 6=03 fory(s)<O0.4 (7.10)
k=13, =094, 6=03 for0.4<y(r)<0.8 (7.11)
k=15 1t=09, 6=03 for0.8<y(r) (7.12)

Then, the tuning parameters of the IMC tuning rule for the equations (7.10)—(7.12) are as
follows:

ke=2739, 1, =1.130, 14=0.130 fory(r) <0.4 (7.13)
ke =2236, 1, =1.090, 14=0.129 for0.4<y(r) <0.8 (7.14)
ke =1.867, 1, =1.050, 14=0.129 for0.8 < y() (7.15)

The MATLAB code to simulate the gain scheduling and the simulation results are shown in
Table 7.4 and Figure 7.10 respectively. Note that the closed-loop response of PID control with
gain scheduling is acceptable, whereas conventional PID control without the gain scheduling
shows an oscillatory response. If the nonlinearity is severe, then PID control without gain
scheduling may show an unstable closed-loop response.

228

Process Identification and PID Control

Table 7.4

MATLAB code to simulate the PID control system with gain scheduling in Example 7.4.

scheduling_exl.m

clear;
t=0.0; t_final=8.0;
x=[0]; y=0.0; yb=0.0; ys=0.0; ysb=0.0;
delta_t=0.005; n=round
(t_final/delta_t);
C=[1]; theta=0.3; % time delay
h_u=zeros (1,1000); n_theta=round
(theta/delta_t); s=0.0;
for i=1:n

t_array(i)=t; y_array(i)=y;

ys_array (i)=ys;
if(t>1) ys=1.0; else ys=0.0; end
1f(y<0.4) kc=2.739; ti=1.130;
td=0.130; end
1£(0.4<=y&y<0.8) kc=2.236;
ti=1.090; td=0.129; end
if(0.8<=y) kc=1.867; ti=1.050;
td=0.129; end
kc=2.739; ti=1.130; td=0.130;
no gain scheduling
s=s+ (kc/ti) * (ys-y) *delta_t;
u=kc* (ys-y) +stkc*td* ((ys-y) -
(ysb-yb)) /delta_t;
ysb=ys; yb=y; % one sampling before
u_array (i)=u;
for j=1:999 h_u(j)=h_u(j+1); end
h_u(1000)=u;
dx_dt=g_scheduling_exl(y,x,h_u
(1000-n_theta)) ;
x=x+dx_dt*delta_t; y=C*x;
t=t+delta_t;
end

o
°
o
°

figure (1) ; hold on; plot(t_array,
ys_array, t_array,y_array);
$plot(t_array,y_array);

figure (2); hold on; plot(t_array,
u_array);

g_scheduling_exl.m
function [dx_dt]=g_scheduling__
exl(y,x,u)
A=[-1/(1-0.1*y)];
B=[(1+0.5*%y)/(1-0.1*y)1;
dx_dt=A*x+B*u;
end

command window
>> scheduling_exl

7.4 Proportional-Integral-Derivative Control using Internal

Feedback Loop

The structure of the PID controller is not appropriate to control an open-loop unstable process
such as an integrating or unstable process (Sung and Lee, 1996; Kwak et al. 2000). For

229

Enhanced Control Strategies

1.5¢
1
N
YN
nl f . .l’,-._.)‘. i - - P
1 e, ¥ N 7 S= -
roW ~
] \/’
[
)
0.5} ! s
;’ --------- y(#) with gain scheduling
: ————— y(#) without gain scheduling
0 I) , .)
1 2 3 4 5
t

Figure 7.10 Control performances of the PID controller with gain scheduling and without gain

scheduling in Example 7.4.
example, consider the following control system composed of the integrating process (7.16) and

dzdytg[) +2di1(;) =u(t—0.1) (7.16)

the PID controller (7.17):
_exp(—0.1s)

Gls) = s(s+2)
1) = ke0u(0)=3(0)+ 2 [00 =3(0) a1y L2 .19

From (7.16) and (7.17):

ke [*

%[ou0 -5 ar =00

Ti Jo

should be satisfied for the offset to be zero. This is true for all integrating processes. Now,
imagine the closed-loop response for a positive step setpoint change. In that case, the final value
of [;"(vs(¢) — y(t)) dz should be zero. But, the integral term from the starting time 7 = 0 and the
rise time 7 = ¢, is inevitably a positive value (that is, f(;’ (ys(¢) —¥(2)) dz > 0.0) because perfect

control is impossible. So, the integral term from the rise time # = 7, to the final time # = e should
be negative (that is, [(vs(¢) — y(7))d¢ < 0.0) because
1 oo
(ul0) =30 ar+ |
I

|| o0 =stepar=|

should always be satisfied for an integrating process. This means that a large overshoot
(equivalently, a large negative error) cannot be avoided. The same conclusion can be derived for
an unstable process. Consider the following control system composed of an unstable process

(ys(2) — y(1)) dr = 0.0

and a PID controller:
Xp(—U. 2
G(s) = (silf;u(())sli)n = 1oddyt(2t) +9d{d—(tl> — (1) = u(t—0.1) (7.18)

(1) = ke(yu(t) = (1)) + ’j—jj;@x(r) (1)) dr 4+ kerg

230 Process Identification and PID Control

From (7.18) and (7.19):

ke (1
— | Os(0) =y(0))dr = —1
Ti Jo

should be satisfied for the offset to be zero. So, the final value of [(y,(#) — y(7)) df should be
negative. Because the integral term at the starting time 7 =0 to the rising time is a positive
value (that is, J(; (ys(#) —y(¢)) dt > 0.0), the integral from the rising time to the final time
should be negative (that is, [(vs(#) —y()) d7 < 0.0) because

t;

oo

0l =) dr+ | o) =) ar = - 2

t

| o0 =stepar=|

0

should be satisfied for an unstable process. This means that a large overshoot (equivalently,
a large negative error) cannot be avoided. This case is worse than the case of an integrating
process because a bigger overshoot is required to satisfy

fmm—w»mz—ﬂmm—wmm—g

Until now, the structural limitation of a PID controller in controlling the open-loop unstable
process is justified.

Then, how to overcome the structural limitation? This can be solved easily by using an
internal feedback control loop (Kwak et al., 2000). Consider the control system of Figure 7.11.
The transfer function of the overall process is

S G(s
Goverall (5) = % = H%(?Y)h (720)

In Figure 7.11, the input and the output of the overall process are u(s) and y(s) respectively.
Note that the overall process composed of the open-loop unstable process and the internal
feedback loop becomes an open-loop stable process. As a result, there are no more structural
limitations.

¥s(s) + u(s) + w(s)
PD(s) ——>(—> G >
L

Figure 7.11 PID control using an internal feedback loop.

A

The PID controller should be tuned on the basis of the overall process through the following
procedure. First, the internal feedback loop should be tuned. For the integrating process, k; can
be tuned on the basis of the ultimate gain k, of the process (for example, k; = k,/4). The optimal

Enhanced Control Strategies 231

gain margin tuning rule in Chapter 5 can be used for the unstable process. Second, the PID
controller should be tuned. To do that, the overall transfer function of Ggyeran(s) = y(s)/u(s) =
G($)/(1 + G(s)k;) should be reduce to an FOPTD or SOPTD model by the model reduction
method. Finally, tune the PID controller using the usual tuning rules for the reduced FOPTD
or SOPTD model. For a detailed description and examples of the tuning of a PID controller
using an internal feedback loop, refer to Chapter 5.

Problems

7.1
7.2

7.3

7.4

7.5

7.6
1.7

Explain the conditions for cascade control to be successful.
Consider the process of Figure P7.1. Determine if the cascade control is recommendable to
the following cases. Here, y(¢) is measurable.

exp(—0.1s) exp(—0.3s) .
G =—" G = "7/ t bl
(@ Gp(s) sr 1 o1 () GrDp y2(?) is measurable
exp(—0.8s) exp(—0.1s) .
b G = 7 G, s 1 Wli’s ¢ bl
(b) p2(5) sr1 o1 (8) n 1)2 , y2(t) is measurable
exp(—0.8s) exp(—0.1s) :
G = 7 G, =— t t bl
(©) Gpls) sr1 o1 (5) GI17 y2(?) is not measurable
10 —0.5: —0.5:
) Gpls) = %, G (5) = %, y2(7) is measurable.
s s

Design a cascade control system for the process in Figure P7.1 with
Gpa(s) = exp(—0.1s) /(s + 1)* and Gpi(s) =exp(—1.0s)/(s + 1)’ and simulate the control
performance for a step input disturbance.

ld(s)

+

u(s) Gools) yg(j) Gon(9 y1(s)
Figure P7.1

Design a Smith predictor for the process G(s) =exp(—1.55)/(s + 1)? and simulate the
control performance for a step setpoint change.
Design the gain scheduling for the following nonlinear process and simulate the control
performance for a step setpoint change:

dy(7)

(@ (1 +O.2y(t))7 +y(1) = (14 1.5y(¢))u(t—0.5)

® (140.1y(1)? dzyt(j) L 2(140.1y(1) (1 4+0.5y() dd—; +y(0)
— 2.0+ u(t—0.5))u(i—0.5)

Summarize the advantages of a Smith predictor and gain scheduling.
Design the decoupled time-delay compensator for the process and the model of
G (5) = Gm(s) = Gp(s) = exp(—0.25)/(s + 1)* and simulate the control performances

232 Process Identification and PID Control

for a step setpoint change and a step input disturbance rejection. In this case, it is not a time-
delay compensator, but it must show good control performances for both the step setpoint
change and the step input disturbance rejection.

7.8 Design the decoupled time-delay compensator for the process Gy(s) = exp(—1.0s)/(s + ?
and simulate the control performances for a step setpoint change. In this case, reduce the
process using the model reduction method to obtain the SOPTD model.

7.9 Design a PID controller and internal feedback loop for the process Gp(s) = Gp(s)
= exp(—1.5s)/s(s + 1)* and simulate the control performances for a step setpoint change
and a step input disturbance rejection.

References

Kwak, H.J., Sung, S.W. and Lee, 1. (2000) Stabilizability conditions and controller design for unstable processes.
Chemical Engineering Research & Design, 78, 549.

Lee, D., Lee, M., Sung, S.W. and Lee, I. (1999) Robust PID tuning for Smith predictor in the presence of model
uncertainty. Journal of Process Control, 9, 79.

Smith, O.J.M. (1957) Closer control of loops with dead time. Chemical Engineering Progress, 53, 217.

Sung, S.W.and Lee, I. (1996) Limitations and countermeasures of PID controllers. Industrial & Engineering Chemistry
Research, 35, 2596.

Bibliography

Seborg, D.E., Edgar, T.F. and Mellichamp, D.A. (1989) Process Dynamics and Control, John Wiley & Sons, Inc.
Stephanopoulos, G. (1984) Chemical Process Control — An Introduction to Theory and Practice, Prentice-Hall.

Part Three

Process
Identification

Process identification methods, whose role is to provide the process model in designing the
process controller, are introduced in Part Three. In Chapter 8, the mathematical tools of the
Fourier series and describing function analysis are introduced, followed by the process
identification methods of the Fourier analysis and the modified Fourier transform to estimate
the process models in the form of the frequency response. Chapters 9 and 10 introduce the
process identification methods used to obtain the process models in the form of a continuous-
time differential equation and a discrete-time difference equation respectively. Chapter 11
discusses how to convert the discrete-time model to a continuous-time model.

3

Process Identification Methods
for Frequency Response Models

A Fourier series is one of the most important representations for describing a periodic function.
The Fourier series and Fourier transform have been widely used to identify process models.
This chapter introduces several process identification methods to estimate the frequency
response data of the process.

8.1 Fourier Series

The Fourier series is an important basic theory needed in deriving and analyzing process
identification methods. In this section, the formulas to calculate the Fourier coefficients of the
Fourier series are derived.

Assume that the periodic function has a period p. It is proven that all the data of the periodic
function can be represented by the following Fourier series (Kreyszig, 2006):

Ft) = ap+ Z} [an cos (”Z”) + b, sin <2’;"’>} (8.1)

where the coefficients are called the Fourier coefficients. Then, how to calculate the Fourier
coefficients for the given periodic function? Let us derive the formula.
Formula to obtain ag Let us integrate both sides of (8.1) from t = —p/2 to t = p/2. Then, (8.2)

is obtained:
/2 2nmt r/2 2nmt
a, J cos (n_n) dt+ b, J sin (n_n) dr| (8.2)
-p/2 V4 p/2 V4

Jp/z flo)de = r/z ap dt + i:
n=1

-p/2

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

236 Process Identification and PID Control

It is straightforward to derive (8.3) from (8.2):

/2 o 1 (?/?
J f(t)dt = pay+ Z(a,, x 0+b, x 0)—ag = fJ f(z)de (8.3)
/2 =1 PJ—pp

Formulato obtaina,,,m = 1,2, ... Letusintegrate both sides of (8.1) from ¢t = —p/2 to t = p/2
after multiplying by cos(2mmn#/p). Then, (8.4) is obtained:

»/2 2mmt »/2 2mmt > »/2 2nmt 2mmt
J f(t)cos(mr) dt:J aocos(mr) dr+ E anJ cos (n_n) cos(mn) dt
-p/2 p -p/2 p =1 -p/2 p p

/2
+b, J sin (_Znnt) cos (Zmﬂ:l) dt
—p/2 p p

Here, consider the following:

(8.4)

p/2
J ap cos (?) dt=0 (8.5)

-p/2

P/2 p/2 p/2 _
J Sin(znm)cos(zmm> e % J Sin{Z(nqu)m}) J Sin[Z(n m)nt} di—0

—p/2 V4 V4 —p/2 V4 2 —p/2

J /2 (Znnt) (Zmnt)
cos| —— |Jcos| ——) d¢
—p/2 p V4
p/2 2mmt 1
:J cosz(mn>dt:—
-p/2 p 2
Jf’/z (2nnt> <2mnt>
cos| ——) cos dt
-p/2 p p

1 (P2 2 t 1(P? 2(n—m)mt
:—J cos{(n—i——m)n} dt+—J COSl:M} dt=0 for n#m
2) _,p p 2)pp p

p/2 p/2 4, t
J 1dt+J cos(mn)dt _P forn =m
-p/2 -p/2 p 2

So, (8.9) is obtained from (8.4):

p/2 2mmnt " 2 (12 2mmt
J f(t)cos(m) dr =24 —ay = —J f(t)cos(o) dt (8.9)
—p/2 P 2 PJ-pp P

Process Identification Methods for Frequency Response Models 237

Formulato obtain b,,,m = 1,2, . .. Letus integrate both sides of (8.1) from ¢t = —p/2 to t = p/2
after multiplying by sin(2mmnt/p). Then, (8.10) is obtained:

Jp/z F(#)sin (@) dr

-p/2 p

p/2 2 t b
:J aosin(mn)dl—i—z
n=1

r/2 2nmt\ . (2mmt
ay, cos| —— |sin dr (8.10)
-p/2 p —p/2 4 P

»/2 2nmt 2mmt
+b,1J sin (n_n) sin(mn) dt
-p/2 V4 p

Here, consider the following:

r/2 2mmnt
J aosin< rj:t>dt:0 (8.11)

-p/2

JW <2m‘ct> , <2mm)
cos| — |sin| ——) dt
-p/2 p p

)) (8.12)
1 (72 2 1 (P/? 2(n—
:_J sm{w} df+—J Sm{w} 4 =0
2 —p/2 V4 2 -p/2 p
JP/2 _ (2mm> . <2mm)
sin sin dt
—p/2 p V4
/2 2t 1|22 /2 2t
:J sin2<mn>dt: J ldt—J cos(mn)dt :[3 forn =m
~p/2 p 2) ~p/2 p 2
(8.13)

Jp/z , <2nnt> _ <2mnt)
sin[— |)sin{ —— | d¢
—p/2 p V4

1(7? 2(n— 1(7? 2
:—J COS{M} dt——J cos{w} dt=0 forn#m
2 —p/2 P 2 -p/2 p
(8.14)
So, (8.15) is obtained from (8.10):
»/2 2mmt b 2 (P2 2mmt
J f(t)sin(e) dr =22 _p, — -J f(t)sin(e) dr (8.15)
—p/2 p 2 PJ-pp p

238 Process Identification and PID Control

In summary, a periodic signal f{#) of which the period is p can be represented by a Fourier series:

=ap+ Z {a,mos() + bysin (2’;m>] (8.16)

where the coefficients of the Fourier series are estimated by the following formulas:

L SN I LV 8.17
w=, | o= s (8.17)
/2
a, = %r f(#)cos <@> dt = %rf(l)cos <@) dt, n=1,2,... (8.18)
PJ-pn V4 PJo V4
/2
b, = %r f(#)sin <@> dt = zrf(l)sin<@>dl7 n=1.2,... (8.19)
DJ_pn V4 DJo p

Example 8.1
Represent the periodic signal shown in Figure 8.1 using a Fourier series.

u(t)

-p P 2p| t

Figure 8.1 A periodic signal for which the period is p.

Solution Because u(t) is a periodic signal, it can be represented by the Fourier series (8.20) as
follows:

27t 27t 21t 27t
u(t) = a0+alcos< T) +blsm(T) +azcos<2 X l) +b251n<2 X l) +
p p P p

(8.20)

Because u(?) is an odd function, then

So, the Fourier series becomes

u(t) = by sm(zrE) +bzsm(2 X 2> +bs s1n<3 X 2m> + - (8.21)
p p p

Process Identification Methods for Frequency Response Models

239

The Fourier coefficients in (8.21) can be obtained by (8.19) as follows:

2 (7 2nmt 2 (P2 2nmt 2 (7 2nmt
b, = 7J u(t)sin <m‘c> dr = fj dsin (nn) dr — fJ dsin <n1t> dr
Plo P Plo P Plp) p

Equation (8.22) can be rewritten as

4 (r/? 2
b, = —J dsin (_nnt) dt
DJo V4

Thus:
4d 2nme\ [P/ 4d 4d
- —cos(n—n) = — —[cos(nm) —cos(0)] =—, n=1,3,5,...
. 2nm P/l 2nm nm
" 4d (2nm\[? 4d
~ 5,7 €08 (nTn) . = =7 [cos(nm) —cos(0)] =0, n=2,4,6,...

So, the final form of u(z) is

4d 4d 4d 4d
u(t) = ?sm(wl) + ﬁsm(&ut) + §s1n(5wt) + %sm(h)t) + -

(8.22)

(8.23)

(8.24)

(8.25)

where w = 27/p is the fundamental frequency of u(7). Figure 8.2 compares the original function

of u(#) and the approximated function by the finite Fourier series of
4d . (2m 4d . 2n 4d . 2n
uy(t) = —sin({ —t |+ ——sin(3—¢)+ -+ + —sin|{ n—1¢
e P 3n p nm D

As the number of the terms increases, a better accuracy is obtained.

1.5

Figure 8.2 Approximation results of a finite Fourier series.

240 Process Identification and PID Control

8.2 Frequency Response Analysis and Autotuning

Let us explain the conventional relay feedback method briefly before introducing frequency
response analysis and autotuning. Figure 8.3 shows an activated process output by a conven-
tional relay feedback method.

i
1
i
l Ay
L
I
1
i
i
1
i
i
T
i
1
i
i
i
i
1

u() L

0 5 10 15 20
t

Figure 8.3 Activated process output by a conventional relay feedback method.

The procedure for process activation by relay feedback is as follows. First, the upper
(on) value of the relay output is applied to drag the process output out of the initial value,
as shown in Figure 8.3. Second, the lower (off) value of the relay is applied when the
process output deviates from the initial state. Third, the upper value of the relay is applied
when the process output is less than the reference value, and vice versa. That is, u(t) = d if
y(2) <0 and u(t) = —d if y(¢) > 0. Then, the process input and output usually reach a cyclic
steady state (which means that the period and the peak value of the process output do not
change) after three or four cycles. For a more detailed description on the relays, refer to
Chapter 12.

8.2.1 Frequency Response Analysis

The objective of frequency response analysis is to estimate the frequency response (frequency
model) of the process from the activated process input and the process output. For example,
consider activated process data from a conventional relay feedback method, as shown in
Figure 8.3. To estimate the frequency model of the process from the activated process input and
output, the two signals of the relay output and the process output are approximated to two sine
signals. As shown in (8.25), the square signal of the relay output in the cyclic steady state can be
represented by a Fourier series as follows:

4d 4d 4d
u(t) = ?Sin(wt) + Esin(SwI) + ﬁsin(Swt) + - (8.26)
where w =27/p, is the fundamental frequency. p, denotes the period of the relay. u(#) and

d denote the relay output and the magnitude of the relay on—off respectively. If only
the fundamental term is considered and the harmonics (higher frequency terms such as

Process Identification Methods for Frequency Response Models 241

4dsin(3wt)/3m, 4d sin(Sw?)/5T, . . .) are neglected, then the following approximation is obtained:
4d
u(t) = Fsin(wt) (8.27)

Also, a sine signal can approximate the process output as follows:
y(t) = — asin(w?) = asin(wt —) (8.28)

where y(#) and a denote the process output and the peak value of the process output respectively.
Then, the process output can be said to be approximately y(¢) ~ a sin(wt — 1) for the process
input u(?) = 4d sin(wt)/m. Then, itis clear that the phase angle between u(¢) and y(¢) is —m. So, the
frequency w is the ultimate frequency of the process. Also, it is clear that the amplitude ratio
corresponding to the ultimate frequency w is approximately ma/4d and the ultimate gain is the
reciprocal of ma/4d. In summary:

2
Wy w= ld and p, = p; (8.29)
Dr
4d
ky =~ — (8.30)
Ta

where w,, p, and k, denote the ultimate frequency, the ultimate period and the ultimate gain
respectively.

8.2.2 Autotuning

Autotuning is tuning the PID controller in an automatic way. It goes through the following steps.
Step 1 (process activation), activate the process using the relay feedback method as shown in
Figure 8.3. Step 2 (modeling), estimate the ultimate period and the ultimate gain using (8.29)
and (8.30) from the measured period, the measured peak value of the process output and the
magnitude of the relay output. Step 3 (tuning), calculate the tuning parameters of the PID
controller using the ZN tuning rule. Step 4 (downloading), download the tuning parameters to the
PID controller. When the user sends a signal to the autotuner by pushing a start button, the
autotuner performs the whole procedure from Step 1 to Step 4 automatically. So, the user who has
no knowledge of process control can successfully tune a PID controller in a very simple way.

Example 8.2
Simulate Figure 8.3 with the process G(s) = exp(—0.5s)/(s + 1)

Solution The MATLAB code to simulate Figure 8.3 is shown in Table 8.1.

8.3 Describing Function Analysis

Describing function analysis can be used to derive (8.29) and (8.30) (zoAstrém and
Hagglund, 1984, 1995). A describing function is a transfer function of a nonlinear element
for a given frequency. For example, consider the symbol representing the ideal relay on—off in
Figure 8.4, where the x-axis and the y-axis represent the input of the relay and the output of the

242

Process Identification and PID Control

Table 8.1 MATLAB code to simulate Figure 8.3 with the process G(s) =exp(—0.5s)/(s + N

conv_relay_exl.m
clear;
delt=0.02; tf=20; n=round (tf/delt);
x=zeros (2,1); u_data=zeros(1,500);
t_on=0.0; t_off=0.0; P_on=0; P_off=0;
ymin=0.0; ymax=0.0; y=0.0; yref=0.0;
index=0; y_delta=0.1;
% initial phase:index=0, relay
phase:index=1
for i=1:n
t=i*delt; yy(i)=y; yyref (i)=yref;
tt(i)=t;
if (index==1)
if(yy(i)>yref & yy(i-1)<=yref)
P_on=t-t_on; t_off=t;
ymax_f=ymax; ymax=0.0;
end
if(yy(i)<=yref & yy(i-1)>yref)
P_off=t-t_off; t_on=t;
ymin_f=ymin; ymin=0.0;
end
end
if (y>yref)
u=-1.0; if (y>ymax) ymax=y; end
end
if (y<=yref)
u=1.0; if (y<ymin) ymin=y; end
end
if (index==0)
u=1.0; if(y>y_delta) index=1;
end
end
for j=1:499
u_data(j)=u_data(j+1);
end
u_data (500)=u; uu(i)=u;

[x,y]=g_conv_relay_exl (x,delt,u_data);
end

P=P_on+P_off;

a= (abs (ymax_f) +abs (ymin_£f)) /2;

AR_u=a/ (4/pi);

w_u=2*pi/P %Sultimate frequency

P_u=P %Sultimate period

AR_u %Sultimate gain

figure (1); plot(tt,uu, tt, vy, tt,yyref);

g_conv_relay_exl.m

function
[next_x,y]=g_conv_relay_exl
(x,delt,u);
subdelt=delt; n=round
(delt/subdelt) ;
A=[0-1;1-21; B=[1;0];C=[01];
delay=0.5;
delay_k=round (delay/delt+
0.00001) ;
for i=1:n

dx=A*x+B*u (500-delay_Xk);

x=x+dx*subdelt;
end
next_x=x; yo=C*x; y=yo;
return
end

command window

>> conv_relay_exl
w_u=1.8700
P_u=3.3600
AR_u=0.2354
Kc_u=4.2488

Process Identification Methods for Frequency Response Models 243

d ——
Input o Output
o 0

—d

v

Figure 8.4 Symbol of an ideal relay.

relay respectively. So, if the input is greater than zero, then the relay output is d. Otherwise, the
relay output is —d. Assume that the input is the sine signal of a sin(wt), where a and w are
respectively the amplitude and the frequency of the sine signal. Then, the relay output will be
the square signal in Figure 8.5 according to the relay symbol in Figure 8.4.

relay input relay output
A

d

-d

Figure 8.5 Relay output for a sine input.

The square signal of the relay output can be represented by a Fourier series and it can be
approximated by a sine signal of the fundamental frequency as follows:

4d . 4d . 4d . 4d
u(t) = ?sm(wz) + ﬁsm(&ot) + gsm(SwI) + = ?sm(wl‘) (8.31)

where u(t), d and o denote the relay output, the magnitude of the relay on—off and the relay
frequency respectively. p, denotes the period of the relay. Then, when entering the a sin(w?)
signal into the nonlinear element (here, the relay) the output of the nonlinear element is 4d sin
(w?)/m. So, the amplitude ratio of the relay is 4d/na and the phase angle is zero. So, the transfer
function (the describing function) of the relay is

4d .
N(a) = o exp(—0i) = - (8.32)

Until now the describing function of the ideal relay has been derived. Again, it is emphasized
that the describing function is just a transfer function of the nonlinear element for a given
frequency.

Now, consider the block diagram in Figure 8.6 for relay feedback control. Note that it
produces the same oscillation as that in Figure 8.3 in the cyclic steady state because the input of
the relay is a negative feedback of the process output (that is, —y(?)). Because the closed-loop
system shows continuous cycling (marginally stable), the characteristic equation of Figure 8.6
will satisfy the following condition:

1+ N(a)G(iw) = 0 (8.33)

244 Process Identification and PID Control

v

A

0 +O I BRI PN ¥

Figure 8.6 Block diagram of an ideal relay feedback control system to activate the process output.

So, the frequency information of the process for the relay frequency w =2n/p, can be
estimated from (8.33) as follows:
1 Ta

Here, it should be noted that the imaginary part of G(iw) is zero. So, the frequency w = 27/p;
is the ultimate frequency of the process and the reciprocal of the absolute value of G(iw) is the
ultimate gain of the process. That is:

2
Wy R W= T and Pu ™ Pr (8.33)
Pr
4d
ky ~ — (8.36)
Ta

where w,, p, and k, denote the ultimate frequency, the ultimate period and the ultimate gain
respectively. These results are the same as (8.29) and (8.30).

Example 8.3

Obtain the describing function for the nonlinear element in Figure 8.7. This is composed of two
channels (Friman and Waller, 1997). One is the proportional channel of the conventional relay
and the other is the integral channel of the conventional relay combined with the integrator.
Here, the magnitude of the relay is one.

Ch. 1

3,
-
ch 2l = K

Figure 8.7 Two-channel relay composed of conventional relays and an integrator.

u(t)

Solution Assume that the input of the two-channel relay is the sine signal of asin(w?).
Then, the output of the proportional channel is the square signal in Figure 8.5 according to
the relay symbol in Figure 8.7. Then, the output of the proportional channel is approximately

Process Identification Methods for Frequency Response Models 245

K,4 sin(wt)/m. So, the describing function of the proportional channel is the same as that of
the ideal relay:
N(a,K K 4 8.37
(a,Kp) = Ky a (8.37)
Consider the integral channel. The sine signal a sin(w?) goes through the integrator. Then, it
becomes —a cos(wt)/w = asin(w? — /2)/w. Then, the relay input of the integral channel is
lagged by ©/2 compared with the input sine signal. This means that the output of the integral
channel is K4 sin(w? — 1/2)/nt approximately. So, the amplitude and the phase angle of the
integral channel are K;4/na and —n/2 respectively. Equivalently, the describing function of the
integral channel is

4
N(Cl,Ki) = Kin—exp(—in/2) (838)
a
Finally, the overall describing function of the two-channel relay is

4 . 4 .
N(a, Kp, Ki) = — (K, + Kiexp(—in/2)] = —(Kp—iKi)
4 .
= /K2 + KZexp| — iarctan(K;/K,)

Example 8.4

Obtain the frequency response of the process from the process input and output activated by the
two-channel relay in Example 8.3. Here, the magnitude of the oscillation of the activated
process output is a and the period of the oscillation is p,. That is, the process output is
approximately a sin(w?), @ =21/p,.

(8.39)

Solution Because the process output is in continuous cycling, the following equation is
satisfied:

14+ N(a,K,, K;i)G(iw) =0 (8.40)
Then, the frequency response of the process at the frequency o is

Gliw) = — v Lexp [iarctan(K;/K})] (8.41)

N(a, Ky, Ki) 4\/K2 + K2

It should be noted that the real and the imaginary parts are both negative. So, the frequency
region identified by (8.41) is a lower frequency region than the ultimate frequency, as shown in
Figure 8.8. As a result, the two-channel relay feedback method can identify the frequency
response data of the process in the third quadrant of the Nyquist plot by adjusting K, and K.

Example 8.5

Obtain the describing function for the following nonlinear element. It is the ideal relay
combined with the time delay (Kim, 1995; Tan et al., 1996). Here, the magnitude of the relay
isd.

246 Process Identification and PID Control

Identified point by the ideal relay, G(iw) = — n4—aexp(i0)

Imaginary

[

—

Real

arctan(K; /K,

Nyquist plot of the process

Identified point
by the two-channel relay, G(iw) = —

na

4KZ+K?

Figure 8.8 Identified Nyquist point by the ideal unbiased-relay feedback method and the two-channel
relay feedback method.

exp(i arctan(K; /Kp))

Solution Assume that the input of the relay combined with the time delay is the sine signal
asin(wt). Then, the output of the nonlinear element in Figure 8.9 is approximately u(¢) = 4d sin
(wt — wh)/n because the square signal of the ideal relay is delayed as long as 6. Then, the
amplitude ratio and the phase angle are 4d/ma and —w@ respectively. Equivalently, the
describing function of the relay plus time delay is

N(a,0) = gexp(—iwb) (8.42)

u(f)

exp(—6s)

Figure 8.9 Relay combined with time delay.

Example 8.6

Obtain the frequency response of the process from the process input and output activated by the
relay plus time delay in Example 8.5. Here, the magnitude of the oscillation of the activated
process output is a and the period of the oscillation is p,. That is, the process output is
approximately a sin(wt), @ =2n/p,.

Solution Because the process output is in continuous cycling, the following equation is
satisfied:

1+N(a,0)G(iw) =0 (8.43)

Process Identification Methods for Frequency Response Models 247

Then, the frequency response of the process at the frequency w is

G(iw) = — N@.0) = — 4—exp(iw0) (8.44)

1 Ta
d
The real and the imaginary parts are both negative. So, the frequency region identified
by (8.44) is a lower frequency region that the ultimate frequency.

8.4 Fourier Analysis

The describing function analysis cannot provide exact frequency data of the process because it
approximates a square signal to a sine signal. Fourier analysis can overcome this problem. It
can estimate the frequency response data of the process without the modeling error from the
process input and the process output activated by the relay (Sung and Lee, 1997).

8.4.1 Fourier Analysis

Assume that the process input (that is, relay output) u(z) and the process output y() after
are periodic with the period of p.. Then, the frequency response of the process can be
estimated by

tss +Dr

Gliw) = 3=

Lss

y(t)exp(—iwt) dt

u(t)exp(—iwt) dt (8:45)

where w should be zero or a multiple of w, =2m/p,. That is, the frequency responses of the
process for several frequencies (zero, w, = 2n/p,, 2w, 3w,, . . .) can be estimated using (8.45)
with numerical integration.

8.4.2 Derivation of Fourier Analysis
From the transfer function

_ J}Zy(l)eXp(—st)dt

G(s) Jo u(t)exp(—st) dt

(8.46) is obtained:

o Jo y(@exp(—iwr) dr
G(iw) = J“g*’ u(t)exp(— iwr) dt (8.46)

Now, consider (8.47).

[tss +Pr

y(t)exp(—iwr) di + J y(t)exp(— iwt) dt
tos +2pr ~ (8.47)
+ J y(t)exp(—iwt)dt+ ---

Iss +pr

J:y(t)exp(—iwt) dt = J

0

248 Process Identification and PID Control

Note that exp(— iw?) = cos(w?) — i sin(wt) is a periodic function of period p, because w is zero
or the multiple of w, = 27/p,. Also, u(?) and y(¢) after ¢, are also periodic functions of the same
period. Then, y(¢)vexp(—iw?) is also a periodic function of the period of p,. Then, (8.48)
and (8.49) are derived:

J:y(t)exp(—iwt) dz:J“ y(t)exp(— iwt) dr + limwnpjss " (Dexp(—iwr)dr (8.48)

0 = ts

) tss tss + pr
J u(t)exp(—iwt) dt = J u(t)exp(—iwt) dt+ lim an u(t)exp(—iwt) dt (8.49)
0

0 np — o0 fe

Also, note that jol“ y(t)exp(—iwt) dr and jé“ u(t)exp(—iwt) dt are negligible compared

with nlim np f;’fﬂ)' y(t)exp(—iwt) dt and 1lim np f,’ TP u(t)exp(— iwt) dt. So, the Fourier
e ny oo P s

analysis (8.50) can be derived from (8.46), (8.48), and (8.49):

s

Gliw)= o> y(t)exp(—iwt)dr+ lim 7, LZS”"y(Z)exp(—iwt)dt B I’;ﬁp"y(t)exp(—iwt)dt

é”u(t)exp(—ia)t)dl—i— EL‘L npj;'::”'u(t)exp(—icut)dt_ I’:”"

u(t)exp(—iwt)dt
(8.50)

No approximations are used for the derivation of (8.50). So, the frequency data obtained
using (8.45) are exact only if the signals of u(#) and y(?) are periodic functions after z.. Usually,
the activated signals by the relay feedback become periodic functions after three or four
relay on—offs. Then, all the frequency responses corresponding to the multiples of the relay
frequency and zero frequency can be exactly identified by (8.45). For example, the three lots of
frequency response data of the process for 0, w, and 2w, can be estimated by calculating (8.45)
repetitively for 0, w, and 2w, only if the activated signals include the three frequency components.

8.4.3 Application of Fourier Analysis

Consider the process input and output in Figure 8.10 activated by a biased-relay feedback
method. In biased-relay feedback, the reference value for the relay on—off is a bias of 0.5 rather

1 -
05 | - o= . = e . . RSN 5 - IR .:
0f- |
u(t)
-05+ 1 0 0 0] e y(t) .
1 [| [| [| L1
0 2 4 6 8 10

Figure 8.10 Process activation by the biased-relay feedback method.

Process Identification Methods for Frequency Response Models 249

than zero (zero means the initial process output value). That is, the relay output is 1.0 if the
process output is greater than the reference value (bias) of 0.5 and the relay output is —1.0 if the
process output is less than 0.5. For a more detailed description on relays, refer to Chapter 12. It
is clear in Figure 8.10 that J"t“ TPy (1)exp(— iwt) dr and f’“ P u(t)exp(— iwt) dt for w =0 are
not zero. This means that the 51gnals u(t) and y(¢) include a significant amount of the zero
frequency information, which becomes bigger as the bias increases. Also, the signals must
include the frequency information corresponding to the relay frequency w, (fundamental
frequency). So, the frequency responses of the process for zero and w, can be estimated
by (8.45) for the biased-relay test.

8.4.4 Analysis of the Fourier Analysis

Assume that the static input disturbance d;, is added to the process input. Note that
f’“ TP dhexp(— iw,t) df = 0 for w, = 21/p,. Then, obtain

[

tSS +pr tSS +p[

u(t)exp(—iw,t) dt + J dinexp(— iw;t) dt

Lss

Jtss +P’(u(t) + diy)exp(— i) dt = J

tss [

ts + Dr

_ J u(t)exp(— i) dr (8.51)

Iss

So, obtain the same estimate from the Fourier analysis as shown in (8.52) even in the presence
of the input disturbance:

I y(1)exp(— iwyt) de > TP y(1)exp(— iwpt) dt

SEP(0) + d)expl—iwn) dr [TP u(r)exp(— iwrt) dt

lss Iss

G(iw,) =

(8.52)

That is, the Fourier analysis of (8.45) provides the exact frequency response for the relay
frequency , under the circumstance of a static disturbance. Note that wrong deviation
variables are equivalent to the case of static disturbances, meaning that the Fourier analysis
provides an exact estimate even though wrong deviation variables are set.

Consider (8.52) for the zero frequency of w =0:

tss + Pr tss + P tss + Pr
u(t) de+ J dip dt = J u(t) dt + dinp:

Iss

r +1f(u(t) + dyp)exp(— i07) dr = J

lss Iss Iss

(8.53)

If ft** ey t) dt > di,p; in (8.53), then the effect of the disturbance becomes negligible, like

tss +Dr

J lwpr(u(z) + din)exp(— i07) dr ~ J u(t)exp(—i0r) dt

Iss

Iss

From (8.53), it is clear that the modeling error for the zero frequency can be reduced
by increasing the integral LSS o u(t) dt. For example, the modeling error can be reduced by
setting a large reference value (bias) to the biased-relay because the integral term usually
becomes bigger upon increasing the reference value.

250 Process Identification and PID Control

In summary, the Fourier analysis of (8.45) for the relay feedback identification has the
following advantages compared with the describing function analysis. First, the frequency
data set obtained is exact. Second, it can obtain several additional frequency data sets
corresponding to multiples of the relay frequency and the zero frequency. Third, it provides
the exact frequency data set corresponding to the relay frequency for a static disturbance.
Fourth, it provides the exact frequency data set corresponding to the relay frequency even
for wrongly specified deviation variables and/or an initially unsteady state. On the other
hand, Fourier analysis has the disadvantage that it requires the whole data of the one
period for the numerical integration. If the sampling time is not small enough, then the
numerical integration becomes inaccurate. Then, Fourier analysis may result in unacceptable
estimates.

Example 8.7
Activate the process G(s) = exp(—0.25)/(s + 1)? using a biased-relay for which the reference
value is 0.5 and estimate the frequency responses using Fourier analysis.

Solution The MATLAB code for Example 8.7 is shown in Table 8.2.

8.5 Modified Fourier Transform

Fourier analysis uses only the cyclic-steady-state data points to estimate the frequency
response data. So, it can provide only several frequency response data because the cyclic-
steady-state data usually include a few frequency components. The modified Fourier
transform is a frequency response estimator to estimate all the desired frequency data of
the process (Sung and Lee, 2000). It uses all the process data from the initial transient region
to the cyclic-steady-state region. The initial transient region usually includes very many
frequency components. So, it is possible to estimate all the desired frequency responses of the
process.

Consider the two different types of process activation in Figure 8.11 of which the initial parts
are in zero steady state. Figure 8.11 is the process input and output activated by a biased-relay
for which the final part is in a cyclic steady state. Figure 8.12 shows the process activation using
a proportional controller for which the final part is in steady state.

The following two modified Fourier transforms can estimate the frequency responses of the
process for the two cases in Figures 8.11 and 8.12.

Modified Fourier Transform for the Cyclic Steady State ~ Assume that the process input (that
is, the relay output) u(¢) and the process output y(?) after ¢ are periodic with period p, and u(¢)
and y(¢) are initially in the zero steady state. Figure 8.11 is one of the examples. Then, the
frequency responses of the process can be estimated by

. [1 —exp(—iwp,)] [exp(—iwt)y(t) dt + [7 exp(—iwt)y(r) de
G(iw) = - 8.54
(i) [1 —exp(—iwp;)] [y exp(— iwt)u(t) dr + Lt“ TP exp(— iwt)u(t) do (8.54)

Process Identification Methods for Frequency Response Models 251

Table 8.2 MATLAB code for the Fourier analysis in Example 8.7.

fourier FAl.m g_fourier_FAl.m
clear; function
delt=0.005; tf=15; [next_x,yl=g_fourier_FAl (x,delt,u);
n=round (tf/delt); subdelt=delt/10;
x=zeros (2,1); u_data=zeros (1,500); |n=round(delt/subdelt);
t_on=0.0; t_off=0.0; P_on=0; A=[0-1;1-21; B=[1;0]; C=[01];
P_off=0; delay=0.2;
ymin=0.0; ymax=0.0; y=0.0; delay_k=round(delay/delt) ;
yref=0.5; np=0; for i=1:n
s1=0.0; s2=0.0; sl1_zero=0.0; dx=A*x+B*u (500-delay_k);
s2_zero=0.0; x=x+dx*subdelt;
index=0; y_delta=0.1; % initial end
phase:index=0, relay phase:index=1 |next_x=x; yo=C*x; y=yo;
for i=1:n return
t=i*delt; yy(i)=y; tt(i)=t;
if (index==1) command window
if(yy(i)>yref & yy (i- >> fourier_ FAlL
1)<=yref) w=2.697, G(0)=0.998,
P_on=t-t_on; t_off=t; G(w_r)=(-0.121)+1(-0.022)
np=np+1;
ymax_f=ymax; ymax=0.0;
end
if (yy (i) <=yref & yy(i-
1) >yref)
P_off=t-t_off; t_on=t;
ymin_f=ymin; ymin=0.0;
end
end
if (y>yref)
u=-1.0; if (y>ymax) ymax=y;
end
end
if (y<=yref)
u=1.0; if (y<ymin) ymin=y;
end
end

if (index==0)
u=1.0; if (y>y_delta)
index=1; end

end

for j=1:499
u_data(j)=u_data(j+1); end

u_data (500)=u; uu(i)=u;

)
if (np==4) $ When 4th on-off,
numerical integration
P=P_on+P_off; w_r=2*pi/P;
Jj=complex (0,1);
sl_zero=sl_zero+y*exp (-

252

Process Identification and PID Control
Table 8.2 (Continued)
J*0*t) *delt;

s2_zero=s2_zerotu*exp (-
J*0*t) *delt;

sl=sl+y*exp (-j*w_r*t)*delt;
s2=s2+u*exp (-j*w_r*t) *delt;
end

[x,v]=g_fourier_FAl (x,delt,u_data);
end

fprintf (' w=%6.3f, G(0)=%6.3f,
G(w_r)=(%6.3f)+1(%6.3f)
\n’,w_r,sl_zero/s2_zero,

real (sl/s2),imag(sl/s2));
figure (1) ; plot(tt,uu, tt,vyy):;

T 1
0.5 I . - e 0
ot " N, |
e Vil
-0.5 u(t) I
......... y(t)
1l I I L] L[
0 5 10 15

25

Figure 8.11 Process activation data for which the initial part and the final part are in a steady state and a
cyclic steady state respectively.

2
Y AL
15} “ ———— u(t) b
)
S [t 70
1Y ;
e,
L. PN
.); eannren AU D e T R
0.5} Y K 4
s \.4”
0 s L L L
0 5 10

15 20
t

Figure 8.12 Process activation data for which the initial part and the final part are in a steady state.

Process Identification Methods for Frequency Response Models 253

Modified Fourier Transform for the Steady State ~ Assume that the process input u(¢) and the
process output y(¢) after ¢, are in a steady state and u(z) and y(¢) are initially in a zero steady
state. Then, the frequency responses of the process can be estimated by
. . Ts .
iw)exp(iwt “exp(—iwt)y(r) dTt+y(2
(iw)exp(ioty) [exp(—iwt)u(t) dt+ u(ts)

In (8.54) and (8.55), w can be any value. So, the frequency responses of the process for all the
desired frequencies can be estimated by (8.54) or (8.55) with numerical integration.

8.5.1 Derivation of the Modified Fourier Transform

The objective of the modified Fourier transform is to estimate G(iw) for the following general
linear time-invariant process (8.56) from the process input of u(#) and the process output of y(¢):

bm m bm— m—1 b b
Gls) =28 b T by 7 Ao A bist by (8.56)
u(s) aps"+ay_ 1"+ +as+1

Equation (8.56) is equivalent to (8.57) with an initially zero steady state:

d"y(t d"~y(t dy(t
Ay dylg) +an71Tz](l) + - +al)£1_(l) +y(t)
(1) u(1) (1) &7
d"u(t d" " u(t du(t
:bmW‘Fbmle "'+bIT+b0u(l)
Consider the transform
t dlc t
Yie(s, 1) = J exp(— s1) d);(kf) dr, k=1,2,... and yo(s,t) = J exp(— s7)y(7) dr
0 0
(8.58)
The transform satisfies the property (8.59), derived by integration by parts:
' d"y(x) d"y(r)
Yu(s, 1) = Joexp(— $T) o dt = sy, —1(s,t) +exp(— st) BT
dn72 t dnfl t
= 5%y, _a(s, 1) + sexp(— st) Til(z) +exp(— st) Ty(')
_ 8.59)
L) () ey
_ 2 3
SnyO(S,l)+CXp(Sl)<Sn T“”Sﬂ ?4’ +W

+5"Lexp(— st)y(1)
= 5"yo(s, 1) +exp(—st)Dy(n —2,s,1) + 5"~ 'exp(— st)y(z)

where Dy (n—2,5,1) = §" =2 dy(t)/dt + 5" =3 d*y(¢)/d? + - - - +d" " 'y(t)/de" . If apply the
transform to (8.57), obtain

(ans" +ay_ 18"~ 4 - s+)yo(s, 1) +exp(—st) (anDy(n—2,s,1) + @, 1Dy(n—3,5,1)

+ -+ @Dy (0,5,1)) +exp(—st) (@, +ay 18" 4 an)y(1)

254 Process Identification and PID Control

= (binS" 4 b 18"+ -+ bis+bo)uo(s, 1) +exp(— 1) (buDy(m — 2,5, 1)
+bmf lDu(m - 37S7 [) + .- +b2Du(0, S, [))
4 exp(— 51)(bps™ '+ by 18" 24 -+ by)ulr) (8.60)

From now, let us consider the two cases. The first case is that the process input u(?) and
the process output y(?) after 7y are periodic with period p,. The second case is that the process
input u(?) and the process output y(?) after 7, are in a steady state.

8.5.1.1 Case 1: Cyclic Steady State

ote that d* ~ "y(¢)/d¢* an Toy(e)/det are the same because y(?) after £, 1S a
Note that d* ~'y(¢)/dF 1|, and d*~'y(r)/d* = 1|, are th b (1) after 1 |
periodic function for which the period is p,. It is also valid for u(z). So, (8.61) and (8.62) are
obtained

e dhy(r) d“y(n) d“1y()
dr = -7 =0, k=1,2.... 8.61
Ls dt* ! ekt ts + dek—1 tes ’ o ()
s b @k (1) d*=tu(r) d*=u(r)
dr = - =0, k=1,2,... 8.62
L T A T P e (8.:62)

And (8.63) is obtained by integrating (8.57) from # to #s + p, and using (8.61)—(8.62):

tSS +pr tSS +pf
J y(t)dt = bOJ u(t) de (8.63)

Iss

s
Now, let us integrate (8.60) from g to ¢, + p, after multiplying exp(st) and use (8.61)-(8.63)
to simplify the results. Then, (8.64) is obtained

by 4 - 4+by ST yo(s, t)exp(st) de+ [P y(e) de

Iss

a4+ - +1 s [uo (s, texp(st) de+ [u(z) de

Iss

G(s) = (8.64)

In (8.64), the term of s jz[:” "yo(s, t)exp(st) d¢ can be simplified by integration by parts as
follows:

t

s J[’ yo(s, t)exp(st) dt = exp(st) JO exp(—st)y(7) dt

tss + Pr tss + Pr
- J y(r)dt

tss tss Iss

= exp(sts) {(exp(spr) —1) L exp(—s1)y(t) dt + exp(spy)

tss +Pr

<[et - st o - [(8.65)

Iss tss

Then, (8.64) becomes

Gls) = [1 —exp(—spy)] jé exp(— st)y(r) dr + Ljrl’ exp(—s1)y(1) dt (8.66)
(1 —exp(—spy)] Jo" exp(—st)u(z)dr+ [~ Prexp(—st)u(t) dt

Process Identification Methods for Frequency Response Models 255

By substituting iw for s, the modified Fourier transform for the cyclic steady state (8.54) is
obtained.
8.5.1.2 Case 2: Steady State

Note that d*y(#)/d/*|, = 0and d*u(1)/di*|, =0,k = 1,2,..., because y(7) and u(?) after t
are in a steady state. So, (8.57) at t = t,, becomes

y(lss) = bou(fss) (8.67)
Then, (8.68) is obtained from (8.60) at ¢ = #:

| sexplsts) Ji* exp(— st)y(e) de+ (1)

~ sexp(stss) Jo= exp(— st)u(t) de + u(ts) (8.68)

By substituting iw for s, the modified Fourier transform for the steady state of (8.55) is obtained.

8.5.2 Analysis of the Modified Fourier Transform

Assume that the static input disturbance d;, is added to the process input. Note that
f"“ tp dinexp(—iw,7) dt = 0 for @, = 21/p,. Then, obtain

Iss

tSS +pr [SS +pl’

exp(—iw7)u(t) dr + J exp(— iw,7)d;, dt

Iss

Jrss +pr exp(_iwrf)(”(T)erin)dt:J

tss tss

tss +Pr
- J exp(— igr)u(t) de (8.69)
tSS

Also, note that 1 — exp(—iw,p,) = 0 for w, = 27/p,. So, the same estimate from the modified
Fourier transform for the cyclic steady state is obtained as shown in (8.70) even in the presence
of the input disturbance:

[1—exp(—iwp;)] jé“ exp(—iwt)y(tr)dr+ ft’“ Prexp(—iwrt)y(t)dt
[1—exp(—iwp;)] fot“ exp(—iw7)(u(t) +din)dt+ ft’: P exp(—iw,t) (u(t) +diy) dt

Gliw,) =

[1—exp(—iwpr)] o exp(—iwet)y(t) dr+ [exp(—iwrt)y(r) de

[1—exp(—iwp;)] Jg“ exp(—iwT)u(t)dr+ ff“ P exp(—iwet)u(t)dr
(8.70)

That is, the modified Fourier transform (8.70) provides the exact frequency response for the
relay frequency w, under the circumstance of a static disturbance. Note that wrong deviation
variables are equivalent to the case of static disturbances, meaning that the modified Fourier
transform provides the exact estimate even though wrong deviation variables are set.

Consider (8.71) for the zero frequency of w = 0. Also, note that 1 — exp(—iwp,) = 0 for v = 0.

tss +Pr [ts +Pr

dyp dt = J u(t) dt + dinp;

Iss

Jtss +r exp(—i07)(u(t) + dip) dt = J

Iss

u(t) de+ J

Iss tss

(8.71)

256 Process Identification and PID Control

From (8.71), it is clear that the modeling error for the zero frequency can be reduced by
increasing the integrals ftt: TP y(7) dr and Jg“ u(7) dz. For example, the modeling error can be
reduced by setting a large reference value (bias) to the biased-relay. The same conclusion can be
obtained for the modified Fourier transform for the steady state.

In summary, the modified Fourier transform of (8.54) has several remarkable advantages. First,
the modified Fourier transform for the cyclic steady state can provide the exact frequency response
data for all the desired frequencies if the final parts of the process input and process output are in a
cyclic steady state and the initial parts are in a zero steady state. Second, the modified Fourier
transform for the steady state can provide the exact frequency response data for all the desired
frequencies if the final parts of the process input and process output are in a steady state and the initial
parts are in a zero steady state. Third, the modified Fourier transform for the cyclic steady state
provides a better accuracy for the disturbance compared with the describing function analysis.
Fourth, the modified Fourier transform for the cyclic steady state provides the exact frequency
response data for the frequency of the relay even though wrong deviation variables are assigned.

Example 8.8
Activate the third-order plus time-delay process (8.72) using the biased-relay feedback method
for the two cases of no measurement noise and measurement noise. The process output for the

1 - - ' ' 1
0.5 . .
I 2 W 2 IS GO I SIS Y A SN .
0 b - . ™ 1
——— Yeet(D)
-0.5 u(t) I
......... y(t)
PN A N N R A D I B |
0 5 10 15 20 25

0 5 10 15 20 25

Figure 8.13 Process input and output data activated by the biased-relay feedback method in Example
8.8: (a) no measurement noise; (b) measurement noise.

Process Identification Methods for Frequency Response Models 257

measurement noise case is contaminated by random measurement noise distributed uniformly
between —0.05 and 0.05. Also, estimate the frequency responses of the process from the
activated process data using the modified Fourier transform for the cyclic steady state.

Gls) = exp(—0.1s)

- 1)3 (8.72)
Solution The process input and output data activated by the biased-relay feedback method is
shown in Figure 8.13. The frequency response data obtained by the modified Fourier
transform (8.54) are exact, as shown in Figure 8.14a. Also, the modified Fourier transform
shows acceptable robustness to measurement noise, as shown in Figure 8.14b. Tables 8.3
and 8.4 show the MATLAB codes for the cases of no measurement noise and measurement
noise respectively.

process

Im(Glie)

—0I.2 0 0.2 0j4 0.6 0.8 1
Re(G(iw))
(a)

process

Re(G(ia)
(b)

Figure 8.14 Identification results by the modified Fourier transform for the cyclic steady state in
Example 8.8: (a) no measurement noise; (b) measurement noise.

258

Process Identification and PID Control

Table 8.3 MATLAB code for the modified Fourier transform for the cyclic steady state in Example 8.8 with

no measurement noise.

fourier_MFT1l.m
clear;
delt=0.005; tf=25; n=round (tf/delt) ;
u_data=zeros (1,500); x=zeros(3,1);
t_on=0.0; t_off=0.0; P_on=0;
P_off=0;
y=0.0; yref=0.3; np=0;
index=0; y_delta=0.1;
% initial phase:index=0, relay
phase:index=1

for i=1l:n
t=i*delt; yy(i)=y; yyref (i)=yref;
tt(i)=t;
if (index==1)
if (yy(i)>yref & yy(i-

1) <=yref)
P_on=t-t_on; t_off=t;
np=np+1;

if np==3 tss_array=i; end
if np==4 tss_pr_array=i;
end
end
if (yy(i)<=yref & yy(i-
1)>yref)
P_off=t-t_off; t_on=t;
end
end
if (y>yref) u=-1.0; end
if (y<=yref) u=1.0; end
if (index==0)
u=1.0; if(y>y_delta) index=1;
end
end
for j=1:499
u_data (j)=u_data (j+1); end
u_data (500)=u; uu(i)=u;
P=P_on+P_off;

[x,v]=g_fourier MFTI1(x,delt,u_data);
end
for k=1:30

w(k)=(2*pi/P)* (k-1)/20;
j=complex (0,1);

s=j*w(k); sl=complex(0,0);
s2=complex (0,0);

s3=complex (0,0); s4=complex(0,0);

g_fourier_MFT1l.m

function
[next_x,yl=g_fourier MFTI1 (x,delt,u);
subdelt=delt/10;
n=round (delt/subdelt) ;
A=[00-1;10-3.0;01-3.0];
B=[1;0;0];C=[001]; delay=0.1;
delay_k=round- (delay/delt+0.00001) ;
for i=1:n

dx=A*x+B*u (500-delay_k);

x=x+dx*subdelt;
end
next_x=x; yo=C*x; y=yo0;
return

command window

>> fourier_MFTI1

Process Identification Methods for Frequency Response Models

259

Table 8.3 (Continued)

for i=l:tss_array-1
sl=sl+exp (-
s*tt(i)) *yy (i) *delt;
s3=s3+exp (-
s*tt(i)) *uu(i)*delt;
end
for i=tss_array:tss_pr_array-1
s2=s2+exp (-
s*¥tt(i)) *yy (i) *delt;
sd=sd+texp (-
s*tt(i)) *uu(i)*delt;
end
num_m=(l-exp (-s*P)) *sl+s2;
den_m=(l-exp(-s*P)) *s3+s4;
gjw_m=num_m/den_m;
Re_m(k)=real (gjw_m) ;
Im_m(k)=imag (gjw_m) ;
gjw=exp (-0.1*s) / (s+1) "3;
Re (k)=real (gjw); Im(k)=1imag (gjw) ;
end
figure (1) ;
plot(tt,yyref, tt,uu, tt,vy);
figure (2); plot (Re, Im, ' -
’,Re_m,Im_m,":");

Table 8.4 MATLAB code for modified Fourier transform for the steady state in Example 8.8 with

measurement noise.

fourier MFT3.m

clear;
delt=0.005; tf=30; n=round (tf/delt) ;
u_data=zeros (1,500); x=zeros(3,1);
t_on=0.0; t_off=0.0; P_on=0;
P_off=0;
y=0.0; yref=0.3; np=0;
index=0; y_delta=0.3; $ initial
phase:index=0, relay phase:index=1
hys=0.05; index_up=1; index_down=0;
rand (’seed’,0); noise=(rand(1l,n)-
0.5)*0.1;
for i=1:n

t=i*delt; yy(i)=y+tnoise (i) ;

yyref (i)=yref; tt(i)=t;

g_fourier_ MFT3.m

function

[next_x,y]l=g_fourier MFT3(x,delt,u);
subdelt=delt/10;
n=round (delt/subdelt) ;
A=[00-1;10-3.0;01-3.0];
B=[1;0;01];C=[001]; delay=0.1;
delay_k=round (delay/delt+0.00001) ;
for i=1:n

dx=A*x+B*u (500-delay_k);

x=x+dx*subdelt;
end
next_x=x; yo=C*x; y=yo;
return

if (index==1)
if (index_down==1 &
index_up==0 & yy (i) <=(yref-hys) &
yy (i-1)>(yref-hys))

command window
>> fourier_MFT3

(continued)

260 Process Identification and PID Control

Table 8.4 (Continued)

index_up=1; index_down=0;
t_on=t; P_off=t_on-t_off;
end
if (index_up==1 &
index_down==0 & yy (i) > (yref+hys) &
yy (i-1)<=(yref+hys))
index_up=0; index_down=1;
t_off=t; P_on=t_off-t_on;
np=np+1
if np==4 tss_array=i;

end
if np==5 tss_pr_array=i;
end
end
end
if (index_down==1) u=-1.0; end
if (index_up==1) u=1.0; end
if (index==0)
u=1.0;
if (y>y_delta)

index=1;
if (yref<y_delta) u=-1.0;
index_up=0; index_down=1; end
end
end
for j=1:499
u_data(j)=u_data(j+1l); end
u_data (500)=u; uu(i)=u;
P=P_on+P_off;

[x,y]=g_fourier MFT3 (x,delt,u_data);
end
for k=1:30

w(k)=(2*pi/P) * (k=1) /20;
j=complex(0,1);

s=j*w (k) ; s1=0; s2=0; s3=0; s4=0;

for i=l:tss_array-1

sl=sl+exp (-

s*¥tt(i)) *yy (i) *delt;

s3=s3+exp (-
S*tt(i))*uu(i) *delt;
end

for i=tss_array:tss_pr_array-1
s2=s2+exp (-
s*tt(i)) *yy (i) *delt;
sd=sd+texp (-
s*tt(i)) *uu(i) *delt;
end
num_m= (l-exp (-s*P)) *sl+s2;
den_m=(l-exp(-s*P)) *s3+s4;

Process Identification Methods for Frequency Response Models 261

Table 8.4 (Continued)

gjw_m=num_m/den_m;

Re_m(k)=real (gjw_m) ;

Im_m(k)=imag (gjw_m) ;

gjw=exp (-0.1*s) / (s+1) "3;

Re (k)=real (gjw); Im(k)=imag (gjw) ;
end
figure (1) ;
plot(tt,yyref, tt,uu, tt,vy);
figure (2); plot (Re, Im, ' -
’,Re_m,Im_m,":");

2
".‘ ¥s(f)
1.5¢ y ——— u(t) b
]
-‘. y(t)
14 ;
[P,
')‘. /r,’_ + R R
05} s " '(' 4
:' ‘\~,"
0 < L L L
0 5 10 15 20

Figure 8.15 Process input and output data activated by the proportional controller in Example 8.9.

Example 8.9

Activate the third-order plus time-delay process (8.72) using a proportional controller. Also,
estimate the frequency responses of the process from the activated process data using the
modified Fourier transform for the steady state.

Solution The process input and output data activated by the proportional controller are shown
in Figure 8.15. The frequency response data obtained by the modified Fourier transform (8.55)
are exact, as shown in Figure 8.16. Table 8.5 shows the MATLAB codes.

8.6 Frequency Response Analysis with Integrals’

Lee et al. (2007) proposed new process identification methods which use the integrals of the
relay response instead of point data. This guarantees better accuracy and advantages in obtaining
the ultimate information of the process compared with the describing function analysis

!Integrals of Relay Feedback Responses for Extracting Process Information, Lee et al. AICKE J. Vol. 53 Copyright
©[2007] John Wiley & Sons, Inc.

Process Identification and PID Control

process

262
0t
0.2
3
S
£ -04
06
-0 L 1

_8 1 1
-04 -0.2 0 02 04 06 08 1

Re(G(iw))

Figure 8.16 Identification results by the modified Fourier transform for the steady state in

Example 8.9.

Table 8.5 MATLAB code for the modified Fourier transform for the steady state in Example 8.9.

fourier_ MFT2.m
clear;
delt=0.005; tf=20; n=round (tf/delt) ;
u_data=zeros (1,500); x=zeros (3,1);
y=0.0; yref=0.7; dis=0.0;

for i=1:n
t=i*delt; yy(i)=y; yyref (i)=yref;
tt(i)=t;
u=1.8*(yref-y);
for j=1:499

u_data (j)=u_data(j+1); end
u_data (500) =u+dis; uu(i)=u;

[x,v]=g_fourier_ MFT2 (x,delt,u_data);
end
wmax=1.2;
for k=1:30
w (k) =wmax* (k-1) /20;
j=complex (0,1);
s=3*w(k); sl=complex (0,0);
s2=complex (0,0) ;
s3=complex (0,0); s4=complex(0,0);
for i=1:n
sl=sl+exp (-

g_fourier MFT2.m

function
[next_x,y]=g_fourier MFT2
(x,delt,u);
subdelt=delt/10;
n=round (delt/subdelt) ;
A=[00-1;10-3.0;01-3.01;
B=[1;0;01;C=[001]; delay=0.1;
delay_k=round(delay/delt+
0.00001) ;
for i=1:n

dx=A*x+B*u (500-delay_Xk);

x=xX+dx*subdelt;
end
next_x=x; yo=C*x; y=yo;
return

command window
>> fourier_MFT2

Process Identification Methods for Frequency Response Models 263

Table 8.5 (Continued)
s*¥tt(i)) *yy (i) *delt;

s3=s3texp (-
s*¥tt(i))*uu(i) *delt;
end

num_m=s*exp (s*tt(n)) *sl+yy(n);
den_m=s*exp (s*tt(n)) *s3+uu(n);
gjw_m=num_m/den_m;
Re_m(k)=real (gjw_m) ;
Im_m(k)=imag (gjw_m) ;
gjw=exp (-0.1*s) / (s+1) "3;
Re (k)=real (gjw); Im(k)=imag (gjw) ;
end
figure (1) ;
plot(tt,yyref, tt,uu, tt,vy);
figure (2); plot (Re, Im, ' -
’,Re_m,Im_m,":");

approaches because the effects of high-harmonic terms are suppressed significantly by using the
integrals of the relay responses. Because it is not required to store the process input and output
and the computations are simple, it can be incorporated easily in commercial PID controllers.

8.6.1 Estimation of Ultimate Frequency Response Data

Consider the conventional relay feedback system shown in Figures 8.17 and 8.18 to derive the
frequency response analysis method with integrals. The relay feedback system starts at a steady-
state condition. The relay is first kept on until the process output rises to a given level and then is
set to the normal mode of switching at the instant that the process output crosses a given set point.
This relay feedback system will produce a stable oscillation, as shown in Figure 8.18. Itis notable
that the given level in the beginning of the relay feedback should be set to a significantly large
value if one want to extract the zero-frequency information of the process. Otherwise, it cannot
guarantee acceptable robustness in extracting the zero-frequency information from the relay
responses.

X U(t) a(s) UR

[us] [ws]

l l

u(y (0

Figure8.17 A conventional relay feedback system and the integrals of the responses. Integrals of Relay
Feedback Responses for Extracting Process Information, Lee et al. AIChE J. Vol. 53 Copyright ©[2007]
John Wiley & Sons, Inc.

264 Process Identification and PID Control

0.5 : .
‘E 0 W
-0.5 L L
0 5 10 15
1 .
: 3 i
- . . _
0 5 10 15
0.4 .
£ o2 1
NS
0 1 1
0 5 10 15
2 T :
= 0 /\/\/\/\/
S
) . ,
0 5 10 15

t

Figure 8.18 Typical relay responses and their integrals. Integrals of Relay Feedback Responses for
Extracting Process Information, Lee et al. AIChE J. Vol. 53 Copyright ©[2007] John Wiley & Sons, Inc.

Let us review briefly the describing function analysis and introduce the frequency response
analysis with integrals. The describing function analysis uses the oscillation data to extract
approximately the ultimate frequency response of the process. Let the input and output
trajectories be u(¢) and y(¢) for the conventional relay feedback system respectively. At time #,
u(t) and y(¢) are assumed to be fully developed (cyclic steady state). This can be represented by
the Fourier series as follows:

u(t) = A%d {sin(wf) + %sin(3w?) + ésin(Sw?) + e (8.73)

where 7 = ¢ — ty and d is the relay magnitude. Let p, and w = 27/p, be the period and the
frequency of the oscillation respectively. The output corresponding to u(7) is

y(7) = % {|G(iw)|sin(wf—|— /G(iw)) + % |G(i3w)|sin(Bwi + /G(13w)) + - -] (8.74)

where G(s) is the transfer function of the process. Neglecting the high-harmonic terms and
assuming /G(iw)=~ —m, the ultimate frequency w, = 21t/p,, and u(f) ~ 4dsin(w,7)/T,
¥(7) ~ 4d|G(iw,) |sin(w,? + /G(iwy))/T &~ —4d|G(iw,)|sin(w,?) /T are obtained. So, the
amplitude of y(7) is 4dG(iw,)l/m. Then, the following approximate ultimate period of p, and
ultimate gain of k, are obtained as

Pu=D"r (8.75)

L _ad

kcu = TA N
|G(iwy)| ma

(8.76)

Process Identification Methods for Frequency Response Models 265

where a is the measured amplitude of y(7). It should be noted that the estimated ultimate data are
approximates because the high-harmonic terms are neglected. As a result, the ultimate
period (8.75) and the ultimate gain (8.76) show relative errors up to 5% and 18% respectively
for the FOPTD process. In this case, the ultimate gain error may not be acceptable.

The frequency response analysis method using integrals uses the integrals of the process
input and output instead of the point data to obtain more accurate frequency responses of the
process by suppressing the effects of the high-harmonic terms.

8.6.2 Frequency Response Estimator 1

Let u;(7) and y;(¢) be the integrals of the relay responses as

u(t) = Jo u(t)de (8.77)
w1 = | s (8.78)

From (8.73), the response u;(?) after t is

4d - 1 - 1 -

Ui (1) = uym — — |cos(wit) + =cos(3w?) + —cos(Swt) + - - - (8.79)
Tw 9 25

where u;,,, is the mean value of u;(¢) as follows:

1 tss + Pr
i = —J wi(x) de (8.80)

Prlig

From (8.74), the response y;(?) after 7, can be represented as

yi(f) = Yim — i—z |G(iw)|cos(wi + /G(iw)) + $|G(i3w)|cos(3w? + /G(i3w)) + - -
(8.81)

where y;,, is the mean value of y;(¢):

1 tss +Pr
Yim = —J yi(t) dr (8.82)

rJig

Figure 8.18 shows the typical plots of these responses.

Then, yi(7) & yim +4d|G(iw,) |cos(w, 1)/ (Tw,) for ui(7) & wim — 4dcos(w,l)/ (Tw,) is
obtained by neglecting the high-harmonic terms and assuming /G(iw) = —7 (equivalently,
the relay period is the ultimate period). So, the amplitude of y; (f) — Vim 18 4dIG(iw)/ (Tw,).
Then, the following ultimate gain: is obtained

1 _ 2dp:
~ |G(iw,)| w2b

(8.83)

266 Process Identification and PID Control

15 15
1 [4)
‘:’/ \\‘
05} S0
B i\
o \
or /]
RN g
05 u(t)
C
-1 A\ === ()
ceeennas uc(t)
-1.5
0 2 4
t t

Figure8.19 Normalized wave forms of the fully developed relay feedback responses. Integrals of Relay
Feedback Responses for Extracting Process Information, Lee et al. AIChE J. Vol. 53 Copyright ©[2007]
John Wiley & Sons, Inc.

where b is the amplitude of y;(7) — yim. The frequency response estimator (8.83) will be
superior to (8.76) because the ratios of the high-harmonic terms to the fundamental frequency
term in y;(7) are much smaller than those in y(7), as shown in (8.73), (8.74), (8.79), and (8.81).

8.6.3 Frequency Response Estimator 2

From the relay feedback responses, the following signals of u.(7) and y.(7) can be constructed
by combining the signals of u(7), u;(7), and y(7), y;():

- L 6m. 16d . . 52d . -
uc(t) = u(r)+ . [:(1 4 pe/4) — i) = Tsm(wt) + Esm(SwZ) + - (8.84)

veld) = y(0) + f}—“wnpr/zt) ~ yin] (8.85)

Remark that u(7) is a rectangular wave, u;(7) is a triangular wave and u.(7) is their
combination such that the third-harmonic term vanishes. The forcing functions of u; (?) and
uc(7) are closer to a sinusoidal wave than (7). Hence, y;(7) and y () are closer to the sinusoidal
wave than y(7) is. Figure 8.19 shows the typical plots of these responses.

Approximating the maximum of y.(7) to

- 6T - 6mb
max(y(7)) + —max(y;() — yim) = a+ »
have

16d 1

n(a+ 6mb/p;) B 1 (na) N 3 b
4 4\ 24p,

kew = (8.86)

4d

Process Identification Methods for Frequency Response Models 267

8.6.4 Frequency Response Estimator 3

Consider the following quantity:

9 [ls+pr 1642 . 1 .
o=2 [a1 (160 + glotor) 8

The right-hand side in (8.87) is derived by applying the orthogonality of sine and cosine
functions to (8.74). Itis remarked that, to compute the above quantity, the trajectory of y(¢) does
not need to be stored. By ignoring the high-harmonic terms in ¢, (8.88) is obtained

1 4d

kew = — =— 8.88
“Gliw)| m/q (8:88)
If y(?) is sinusoidal, then @ = /g and (8.76) and (8.88) provide the same results.
8.6.5 Frequency Response Estimator 4
Consider the following quantity:
2 [l 2 ’ 164> ENTE .)
gi :prLs yi(t) dr—2y;, = 2o <|G(1w)| + 30 |G(i3w)|" + -) (8.89)

The right-hand side in (8.89) is derived by applying the orthogonality of sine and cosine
functions to (8.81). By ignoring the high-harmonic terms in g;, (8.90) is obtained

1 2dp,
kew = - = 8.90
Gliwn) — PVa (8.90)

If y;(7) is sinusoidal, then b = v/¢i and (8.83) and (8.90) provide the same results.

Figure 8.20 shows the relative errors in the estimated ultimate period and ultimate gains. For
the FOPTD process with the ratios of the time delay to the time constant between 0.1 and
5, (8.83), (8.86), (8.88), and (8.90) have relative errors below about 6%. This confirms that the
relative errors of (8.76) for the ultimate gain can be improved considerably by the frequency
response estimators using the integrals.

8.6.6 Frequency Response Estimator 5 for Nyquist Point Data

Until now the ultimate gain is estimated on the assumption that the period of relay feedback
oscillation is the ultimate period. Strictly speaking, this is a wrong assumption. So, let us find
the following amplitude ratio and the phase lag of the process at the frequency of the relay
oscillation without the assumption:

G(iw) = Agexpli(— T+ ¢,)], o =2n/p: (8.91)

where A, =1G(iw)l) and ¢, =1 + /G(iw). From (8.76), (8.83), (8.86), (8.88), and (8.90),
the approximate amplitude ratio at the frequency w = 27/p, can be obtained by neglecting
high-harmonic terms. Among them, consider (8.90).

268

Process Identification and PID Control

LL =
‘._.:-.:ll.n...---......-

i,

L ey

S
£ o T Eq. (8.75) 1
2 Eq. (8.76)
g g2 -==Eq. (8.83)| -
----- Eq. (8.86)
03 EEmEE Eq (890) i
— £ (8.88)
0.4 . L L : -
0 1 2 3 4 S

time delay/time constant

Figure 8.20 Relative error in the estimation of the ultimate period and gain for FOPTD processes
G(s) =exp(—0s)/(ts + 1). Integrals of Relay Feedback Responses for Extracting Process Information,
Lee et al. AICKE J. Vol. 53 Copyright ©[2007] John Wiley & Sons, Inc.

/G
2dp, ()
Equation (8.92) is the most accurate equation for the amplitude ratio at the frequency w = 2n/p,.
If IG(inw)l <1G(iw)l, n=2, 3, ..., its approximation error is
(Ao GG /GG < /14 1/3 +1/5 4 1= 1200073 (893)
w — 4\/6

Now, consider the following quantity:

2 tss + pr
— u(t)yi(r) dr
3

qec = et rtss
I%Jz ! ui(7)i(7) T — 2uimYim
2 13w
- 81:3‘1 [sin(ZG(iw)) + %Sin(ZG(BwD + }
Apld® . 1G(i30)| ,
= [COS(ZG(I(D)) + WCOS(ZG(GQ))) + -]
2n { sin(¢p,) |G(i3w)] [sin(/G(i3w)) sin(c{)w)cos(ZG(Bw))} N
pr eos(e,) |Gliw)]| 27cos(¢b,,) 81cos*(,,)

Ignoring the high-harmonic terms, (8.95) is obtained

b, = arctan(

Pr
e

)

Process Identification Methods for Frequency Response Models 269

Then, the approximate phase angle of the process is /G(iw) ~ ¢w — 7. As a result, the
frequency response of the process can be estimated at the frequency of the oscillation by
using (8.92) and (8.95).

In summary, the frequency response estimators using the integrals of the relay responses can
provide more accurate estimates for the frequency response data by reducing the high-
harmonic terms. For FOPTD processes, the relative errors over 15% of the previous describing
function analysis approaches in estimating the ultimate gain can be reduced to below 5%. They
are very simple and can be applied easily to commercial PID controllers.

Example 8.10

Activate the process G(s)=exp(—0.25)/(s + 1)2 and estimate the ultimate gain using
(8.76), (8.83), (8.86), (8.88), and (8.90). Also, estimate the frequency response using (8.92)
and (8.95).

Solution The MATLAB code for the simulation and the estimated frequency responses are
given in Table 8.6.

Table8.6 MATLAB code to estimate the ultimate gain and the frequency response using the integrals of
the relay feedback signals in Example 8.10.

frequency_integralsl.m
clear;
delt=0.005; tf=20; n=round (tf/delt) ;
u_data=zeros (1,500); x=zeros(2,1);
t_on=0.0; t_off=0.0; P_on=0; P_off=0;
u=0.0; y=0.0; yref=0.0; np=0;
ui=0.0; yi=0.0; y2i=0.0; % integrals of u,yand y*2 from 0 to t

o)

uii=0.0; yii=0.0; yi2i=0.0; % integrals of ui,yi and yi*2 from tss

to tss+pr

uyii=0.0; uiyii=0.0; % integrals of u*yi andui*yi from tss to tss+pr
d=1.0; %magnitude of relay

ymin=10710; ymax=-10710; yimin=10710; yimax=-10"710;

index=0; y_delta=0.1; $ initial phase:index=0, relay phase:index=1

for i=1:n
t=i*delt; yy(i)=y; yyref (i)=yref; tt(i)=t;
yi=yi+y*delt;
if (index==1)
if(yy(i)>yref & yy(i-1)<=yref)
P_on=t-t_on; t_off=t; np=np+l;
end
if(yy(i)<=yref & yy(i-1)>yref)
P_off=t-t_off; t_on=t; end
end

if (np==4)
if (ymin>y) ymin=y; end

270

Process Identification and PID Control

Table 8.6 (Continued)

if (ymax<y) ymax=y; end
if(yimin>yi) yimin=yi; end
if (yimax<yi) yimax=yi; end

yii=yii+yi*delt; y2i=y2i+y*y*delt; yi2i=yi2i+yi*yi*delt;
uii=uiit+ui*delt; uyii=uyii+u*yi*delt; uiyii=uiyii+ui*yi*delt;

end
f(y>yref) u=-d; end
f (y<=yref) u=d; end
f (index==0)
u=d; if (y>y_delta) index=1; end
end
for j=1:499 u_data(j)=u_data (j+1); end

u_data (500)=u; uu(i)=u; P=P_on+P_off; ui=ui+u*delt;
[x,y]=g_frequency_integralsl (x,delt,u_data);

end

a_y=(ymax-ymin) /2; a_yi=(yimax-yimin) /2;
kcu_8_83=2*d*P/ (pi*pi*a_yi);

kcu_8_76=4*d/ (pi*a_y);
kcu_8_86=16*d/ (pi* (a_y+6*pi*a_yi/P));
q=2*y21i/P; kcu_8_88=4*d/pi/sqgrt(q) ;

yim=yii/P; qi=2*yi2i/P-2*yim”~2; kcu_8_90=2*d*P/ (pi~2*sqrt(gi));

uim=uii/P; AR=pi”2*sqrt(gi)/ (2*d*P) ;
gc=(2*uyii/P)/ (2*uiyii/P-2*uim*yim) ;
PA_degree=180* (-pi+atan (P*qc/2/pi)) /pi;

s=complex (0,1) *2*pi/P; G=exp (-0.2*s)/ (s+1)"2;

.1f\n’,AR_actual, PA_actual);

AR_actual=abs (G) ; PA_actual=180*atan2 (imag(G),real (G)) /pi;
fprintf (' kcu(real)=%6.3f\n’,10.672) ;

fprintf (" kcu(8.76)=%6.3f\n’,kcu_8_76);

fprintf ("kcu(8.83)=%6.3f\n’,kcu_8_83);

fprintf (' kcu(8.86)=%6.3f\n’,kcu_8_86) ;

fprintf (" kcu(8.88)=%6.3f\n’,kcu_8_88);

fprintf ("kcu(8.90)=%6.3f\n’,kcu_8_90);

fprintf (AR (real)=%5.3f, PA(real)=%6

fprintf (AR (8.92)=%5.3f, PA(8.95)=%6

.1f\n’

, AR, PA_degree) ;

g_frequency_integralsl.m

function
[next_x,yl=g_frequency_integralsl
(x,delt,u);
subdelt=delt/10; n=round (delt/subdelt) ;
=[0-1;1-2]; B=[1;0];C=[01];
delay_k=round (delay/delt) ;
for i=1:n

dx=A*x+B*u (500-delay_kXk);
x=x+dx*subdelt;
end
next_x=x; yo=C*x; y=yo;
return

delay=0.2;

command window

>>
frequency_integralsl
kcu(real)=10.672
kcu(8.76)=9.816
kcu(8.83)=9.892
kcu(8.86)=9.873
kcu(8.88)=9.855
kcu(8.90)=9.862
AR (real)=0.101,
A(real)=-177.0
R(8.92)=0.101,
A(8.95)=-176.4

Process Identification Methods for Frequency Response Models 271

Problems

8.1 Represent the periodic signals of Figure P8.1a, b and c using a Fourier series up to five
terms.

8.2 Assume that you obtain the process output y(f) = —asin(w?), w =2mn/p, a > 0 for the
process input in Figure 8.1a. Find the frequency response of the process for the frequency
w =27/p.

8.3 Assume that you obtain the process output y(¢) = b — asin(wt), w =2n/p, a > 0 for the
process input in Figure P8.1b. Find the frequency responses of the process for the
frequencies w =0 and w = 2mn/p.

(a) u(t)
— &—P4
J_H oL L T1
— &
o
—d2
L o
(b)
u(t)
d+e
P 2P 3P t
d-e
(c)
u(t)
d
3P4} |P 7P RP11P4] 3P t
4 u u, u o L

Figure 8P.1.

272

Process Identification and PID Control

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

Assume that you obtain the process output y(¢) = b + asin(wt — ¢,)+ axsin(2wt — ¢,),
w =2n/p, ¢, >0, ¢, >0 for the process input in Figure P8.1c. Find the frequency
responses for the frequencies w =0, w =27/p and w =47n/p.

Simulate the conventional relay feedback control system for the process G(s)=exp
(—0.15)/(s + 1) and estimate the ultimate frequency response of the process from the
activated process input and output. Also, compare the estimates with the actual ultimate
frequency response.

Simulate the relay feedback control system combined with the time delay (6 =0.3) in
Figure 8.9 for the process G(s)=exp(—0.1s)/(s + 1)3 and estimate the frequency
response from the activated process input and output. Also, compare the estimates with
the actual values.

Simulate the two-channel relay feedback control system in Figure 8.7 for the process
G(s) =exp(—0.1s)/(s + 1)3 and estimate the frequency responses from the activated
process inputs and outputs. Also, compare the estimates with the actual values.

(@) K,=1.0,K=10
(b) K,=1.0, K;=0.0
© K,=00, K =10.

Simulate the biased-relay feedback control system for the process G(s) = 1/(s + 1)* and
estimate the two frequency responses w = 0 and w = w, from the activated process input
and output using Fourier analysis. w, is the frequency of the relay. Also, compare them
with the actual values.

Simulate the biased-relay feedback control system for the process G(s)=1/(2s + 1)
(s + 1)3 and estimate all the frequency responses for w = kw,/10,k =0, 1,2,. . ., 15, from
the activated process input and output using the modified Fourier transform. Also,
compare them with the actual values.

Simulate the proportional (P) control system of which the proportional gain is 1.0 for
the process G(s)=1/(2s + 1)(s + 1) and estimate all the frequency responses for
0w =kwl/10, k=0, 1, 2,..., 15, from the activated process input and output using the
modified Fourier transform. Also, compare them with the actual values.

Run the virtual process of Process 3 (refer to the Appendix for details) and activate the
process using a biased-relay. Estimate the two frequency responses for w =0 and w = w,
from the activated process input and the output using Fourier analysis. w, is the frequency
of the relay.

Estimate all the frequency responses for w = kw,/10,k =0, 1,2,. . ., 15, from the activated
data in Problem 8.11 using the modified Fourier transform.

Obtain the tuning parameters of a PID controller using the IMC tuning rule on the basis of
the identified frequency responses in Problem 8.11. Also, show the control performance
of the PID controller for the virtual process.

Obtain the tuning parameters of a PID controller using the ITAE-2 tuning rule on the basis
of the identified frequency responses in Problem 8.12. Also, show the control perfor-
mances of the PID controller for the virtual process.

Simulate the conventional relay feedback control system for the process G(s)=exp
(—0.35)/(s + 1)(5s + 1) and estimate the ultimate gains using (8.76), (8.83), (8.86),
(8.88), and (8.90) and compare them with the actual value.

Process Identification Methods for Frequency Response Models 273

8.16 Estimate the frequency response of the relay frequency using (8.92) and (8.95) from the
activated process input and output of Problem 8.15.

8.17 Run the virtual process of Process 1 (refer to the Appendix for details) and activate the
process using a conventional relay. Estimate the ultimate gains using (8.76), (8.83), (8.86),
(8.88), and (8.90).

8.18 Estimate the frequency response of the relay frequency using (8.92) and (8.95) from
the activated process input and output of Problem 8.17.

References

I&Strém, K.J. and Hagglund, T. (1984) Automatic tuning of simple regulators with specifications on phase and amplitude
margins. Automatica, 20, 645.

Astri')m, K.J. and Hégglund, T. (1995) PID Controllers, Instrument Society of America, NC.

Friman, M. and Waller, K.V. (1997) A Two-Channel Relay for Autotuning. Industrial & Engineering Chemistry
Research, 36, 2662.

Kim, Y.H. (1995) PI controller tuning using modified relay feedback method. Journal of Chemical Engineering of
Japan, 28, 118.

Kreyszig, E. (2006) Advanced Engineering Mathematics, John Wiley & Sons, Inc.

Lee, J., Sung, S.W. and Edgar, T.F. (2007) Integrals of relay feedback responses for extracting process information.
AIChE Journal, 53, 2329.

Sung, S.W. and Lee, 1. (1997) Enhanced relay feedback method. Industrial & Engineering Chemistry Research, 36,
5526.

Sung, S.W. and Lee, 1. (2000) An improved algorithm for automatic tuning of PID controllers. Chemical Engineering
Science, 55, 1883.

Tan, K.K., Lee, T.H. and Wang, Q.G. (1996) Enhanced automatic tuning procedure for process control of PI/PID
controllers. AIChE Journal, 42, 2555.

9

Process Identification Methods
for Continuous-Time Differential
Equation Models

Two groups of process identification methods to obtain the process model in the form of
continuous-time differential equation are introduced in this chapter. The first group estimates
the model parameters using the least-squares method after it converts the continuous-time
differential equation to the algebraic equation using the time-weighted integral transform. The
second group estimates the model parameters by solving the nonlinear multivariable optimi-
zation problem of which the objective function is the norm of the modeling error. Numerical
examples and MATLAB codes for each process identification method are provided.

9.1 Identification Methods Using Integral Transforms

The identification method using the integral transform provides the following continuous-time
time-invariant linear model:

m m—1
G(s):&:b’”s 4+ by 18 + +b1s+ by ©.1)

u(s) aps" +a,_ 15" 4 o Fas+1

where the transfer function of G(s) is strictly proper; that is, m <n. u(s) and y(s) denote the
Laplace transforms of the process input (i.e. controller output) and the process output
respectively. Two identification methods are introduced in this section. The first method can
be applied to the case that the process is initially in a steady state. The second method can
incorporate the case of the initially unsteady state.

9.1.1 Identification Method for the Case of an Initially Steady State

The identification method using the integral transform introduced in this section can be applied
to the case that the process is initially in a steady state (Sung and Lee, 1999). It can estimate the

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

276 Process Identification and PID Control

model parameters with frequency weighting. Consider the transfer function (9.1). It is
equivalent to the following continuous-time differential equation (9.2). Also, assume that the
initial values of the process input and the process output are zero and steady state; that is,
y0)=0, d yediM,_y=0,i=2,...,n and u(0)=0, d u@ydi Y,_y=0,i=2,...,m.

d"y(1) "~ y(1) dy(1)
ay a -l-anflw“r'“-f—alv +y(2) (9.2)
m m—1
_p,)y M0 () 4B

drm dm— 1

where B represents a bias term to incorporate the case that the deviation variables are not specified
correctly or a static disturbance enters. If the reference value for the deviation variables is chosen
correctly, then by setting B =0 the B value need not be estimated additionally.

Now, consider the following integral transforms for the signals of y(), u(¢) and b(f) = 1.

y(s) = J: exp(—st)y(t) dt, u(s) = J: exp(—st)u(t)dz, b(s) = J: exp(— st)b(r) dt
(9.3)

Because y(0)=0, d" 'y(n/dr'l,_g=0, i=2,....n, and w(0)=0, d" 'u()/ds""l,_o=0,
i=2,...,m, it can be assumed that y(#)l;<o=0, d 'yt <=0, i=1,2,...,n, and
u(t)lj<o="0, d"'u(t)/dt’",<o=0, i=2,...,m. Then, (9.3) is equivalent to

y(s) = J: exp(—st)y(?) dt, u(s) = J: exp(—st)u(t)dt, b(s) = J: exp(—st)dt (9.4)

It should be noted that y(s) and u(s) in (9.4) are the Laplace transforms. So, the following
algebraic equation can be easily obtained by applying the transform to (9.2):

1

aps"y(s) +an,_ 15" ' y(s)+ - +arsy(s) +y(s)

= b8 u(s) + by 18" " Mu(s) + - -+ + bou(s) + Bb(s) (9.5)

where b(s) = |~ exp(~st) dt = [exp[—s(¢ — ;)] dt. The objective of the process identifi-
cation method is to identify the coefficients of a;, k=1,2,...,n, and by, k=0,1,...,m.
To do that, the process input and output data for # > 0 are required for the calculation of y(s) and
u(s). Also, b(s) can be obtained by integrating exp[—s(¢ — t)] from =0 to t =co.

Let us choose sin (9.4) like s =« + iw. « is a positive real value. Then, the weight function
in (9.4) becomes exp(—st) = exp(—art) exp(—iw?). Note that the magnitude exp(—«t) of the
weight function decays exponentially to zero as the time increases. Then, the important
conclusion reached is that y(s) and u(s) in (9.4) can be calculated by integrating exp(—s?)y(?)
and exp(—s?)u(?) from zero to a finite value using a numerical integration method. That is:

y(s) = Jf exp(—st)y(¢)de, u(s) = Jf exp(—st)u(t)de, b(s) = Jf exp[— s(t — t;)] dt
0 0 0
(9.6)

Process Identification Methods for Continuous-Time Differential Equation Models 277

where a should be chosen as a positive value that makes exp(—aty) sufficiently small. For
example, exp(—atp) = 0.0001 = a = —In(0.0001)/t;. w is for a frequency weighting. Detailed
analysis about the frequency weighting will be provided in the next section.

How to determine #;? Consider the step input signal u(f)=1, t>0 and u(z) =0, ¢<0.
If1,=0, thenu(s) = [exp(~ st)u(t) dtis the same with b(s) = |~ exp(~ s¢) dz. This means
that the independence between u(s) and b(s) cannot be guaranteed. Then, it is impossible to
estimate the model parameters. So, 7, should be large enough to guarantee the independence
between u(t), t >0, and b(¢) =1, t > —t,. The recommendation is ¢, = /5.

Now, let us recommend the procedure and specifications for the process identification
method using the integral transform (9.5). First, determine « by a = —In(0.0001)/t; and
ts = t4/5, where f¢1s the final time of the activated process input and the process output. Second,
determine the frequencies wy, k=1,2,...,ns from 0 t0 W by 0= (k — Dopa/(ns— 1),
where w,,x = 127/t; is recommended. Third, calculate the integrals of the transforms y(sy),
u(sy) and b(sy) in (9.6) for the desired frequencies wy, k=1,2, ..., n; Fourth, estimate the
model parameters (the coefficients of (9.2)) by applying the least-squares method to (9.5).
A process order of n =3, m =2 is recommended because the third-order model can describe
with acceptable accuracy the dynamics of most processes in process systems engineering.

Example 9.1
Consider the following SOPTD process:

- exp—OASS
Golo) =" ©7)

Figure 9.1 shows the activated process outputs by the P controller with a gain of 2. The 15
desired frequencies chosen are located equally between 0 and 127/#;. The setpoint is changed
at =0. The system identification method shows good performances, as shown in Figure 9.2.
The MATLAB code to simulate Example 9.1 is shown in Tables 9.1 and 9.2. nyquist_
continuous_ IT_LSO should be executed after continuous_IT_ LSO is executed.

0 5 10 15 20
t

Figure 9.1 Activated process output and input by a proportional (P) controller.

278 Process Identification and PID Control

process

-0.8 : : :
-0.5 0 0.5 1 15

Re(G(iw)

Figure 9.2 Identification results of the identification method using the integral transform.

9.1.2 Identification Method for the Case of an Initially Unsteady State

The process identification method using the integral transform in this section can manipulate
the case that the process is not initially in a steady state and it can estimate the model parameters
with frequency weighting. Consider the following transform for the signal y(¢) and u(?):

5 dl’l t dm t I dn t dm ¢
sonmw) = [S@OENG ¢ gy = [0 d

0 ds drm 0 d dgm (9 8)

e dm ¢ 1 dm p .
y(0,m, w) = J w(w, 1) d}t)’i) dt, u(0,m,) = J w(w, 1) dlj’i) dt

0 0

The weight of w(w, f) will be explained later in this section. Using integration by parts,
the following equations can be derived:

d'- lw(w, tr)d" ™ 1y(l‘f) d"- 1w(w, 0)d"~ 1y(O)

y(n—l,n,w): _y(nvn_17w)+ dtn—l dtn—l - dtn—l dl”_l
d" 'wlw,) d" " 'u(ty) A" 'w(w,0)d" 'u(0)
un—1,n,0)= —un,n—1,0)+ e K77 B e ari

(9.9)

Equation (9.10) can be obtained from (9.9) if the weight satisfying d*w(w, 0)/d7* = d*w(w,
id*=0,k=1,2,....,n— 1, and w(w, 0) =w(w, f;) =0 is chosen.

¥(0,k,0) = (—1)*y(k,0,0) and u(0,k,0)= (-1 u(k,0,0) k=1,2,....n—1 (9.10)

Now, consider the transfer function (9.1). This is equivalent to the following continuous-time
differential equation:

d"y(t d"y(z dy(¢ d™u(t d™ u(s
¥)+an | ¥()+---+a1£—|—y(t):bm dt;n(l) By dtmlf(l)+,..+b0u(1)+3
(9.11)

=g I dr

279

Process Identification Methods for Continuous-Time Differential Equation Models

(panunuod)

8G600°0-
9900°T
r80€ 0-
9T€0°0
8¢GZ" ¢
9PV T
0LSC 0
=1ey 4
0ST II SNONUT31UOD <<

MOPUTM PUBUUWOD

uIniax
!xyD=A X=X 1xX32U
pus

{1 TopPQNs x XP+X=X

L (T AeToP-000T) Nyd+X £ ¥=XD
Uu:l=T JI0J
! (3T19p/AeTop) punoa=y Aersp
{gro=Aetrep {[10]=D ‘[0 ‘T]l=d ‘[Z-T ‘1-0]=¥
(3TepPAns/31Tep) punoi=u {QT/3TeP=3T=pPqns
{(n’3Tep ‘%) 0ST LI sSnonurjuod b=[A’/x 3xau]
uoT3lounyg

u* QST LI Snonurtjuod b

£ (o) my C+eydre=s
S(T-FU) /xeumy (T-3) = ()M

Ju:I=y 103
pus
0°0=(3)
0TM 0" 0=()Z2 N ‘0"0=()T A‘0"0=(N0N
‘07 0=(3)
€TX40°0=CDZ A0°0=CDT & 40°0=(10 &
Ju:iT=3 I07J

{G/33-=53 {33/(1000°0)bor-=eydre
{33 /TdyzT=xewm {GT=Ju ! (T’Q) xoTdwoo=_

{(sAA’33 /AR “33/nn‘33)3071d ¢ (1) =anb1g
pus
{(e3ep n/3T9p“xX)0ST LI Snonurjuod b=[A’x]

n=(700T) e3P N {n=(T)nn
pus
{(1+0)ezep n=([)e3zep n
000T:T=C 1037
!sh=ng ! (A-sk) 40" z=n
pus {0°1=s& (0°0<3) IT
!8h=(T)SAK 13=(T)33 !A=(T)4ALK
{3TOP«T=3
u:I=T I0J
{(T00T 1) soxsz=e3EpP 1
‘0=A f070=sk ¢,[00]=¥
{170=Aetrep {[101=D0 ‘[0 ¢ 1T]l=9d ‘[z-T1¢1I-0]=¥
{(3T9P/3F3) PUnoi=u {0z=33 ‘20 0=3T°P
KMMQHU

w° QST LI SnonuITluod

"T'6 ordurexq jo werqoxd uoTiRWNS? Y} JA[OS 0) 9p0d GV IIVIN T°6 2IdelL

Process Identification and PID Control

(X% ,IHd) x (IHdx ,IHd) AUT=3RY 4

Pu=
0™ M) bewT= (L “Y+FU) IHA ¢ (() 0" M) Te>I=(L ‘) IHA
0 n)bewT= (9 ‘3+JU) IHA (()0 N) Te>I=(9 ‘) IHd
T 0)bewT= (G Y+3U) IHA ¢ ((A) T") Te=I= (G ‘3) IHd
Z7n)bewT=(y ‘M+3Ju) IHA ¢ ((3M) 2) Te2I= (¥ ‘¥) IHA
X) bewT-= (¢ 3{+3uU) IHd ¢ (({) T_X) Te=I-= (€ ‘¥) IHd
TR)Bewr-=(z3+3FU) IHA ¢ ((A) T wvﬂmmulnAm 3) IHd
TX)bewT-=(T‘Y+JU) IHA ¢ ((3) € X) TeeI-=(T1 ‘) IHd
() 0" R)bewT=(T+IU) X { (() 0 X) Te=x=(T ‘)X

pus

{3ToP«Z3UDBTOM+ (3) 0" M=(3) 0" M
13ToP« (T) NNy 3UBTOMLZ S+ (3) 2 N=(3) C N

{3ToPx (T) NNy IYDTOML S+ () T
{3Top« (T) nny3ybTOM+ () 0
137904 (T) AR aubTomy g, S+ (3

379D« (T) AR aybTOMyZ S+ (M) T A=) C X

13T904 (T) KA aubTomys+ () T- A= () T™ X
{3Topx (T) AAy3ybtom+ () 07 A= (3) 0” &
! ((s3-3) ys-)dxo=zaybTom
! (3ys-)dxe=aybtom
379D« T=3
u:T=T X037

280

(ponuyjuod) 1°6 d1qeL

Process Identification Methods for Continuous-Time Differential Equation Models 281

Table 9.2 MATLAB code to draw Figure 9.2.

nyquist_continuous_IT_LSO.m

del_w=0.01; wmax=pi; n=round (wmax/del_w) ;
for i=1:n

w=(i-1)*del_w;

s=j*w;

gjw=exp (-0.5*s) / (s+1) "2;

gjw_P_hat=(P_hat (4) *s"2+P_hat (5) *s+P_hat (6))/ (P_hat (1) *s"3+
P_hat (2)*s”2+P_hat (3) *s+1) ;
Re (i)=real (gjw); Im(i)=imag(gjw) ;
Re_P_hat(i)=real (gjw_P_hat); Im_P_hat(i)=imag(gjw_P_hat);
end
figure (2) ; plot(Re, Im,Re_P_hat,Im_P_hat,’:’);

command window

>>nyquist_continuous_IT_LSO

where B represents a bias term to incorporate the case that the deviation variables are not
specified correctly or a static disturbance enters. If the reference value for the deviation
variables is chosen correctly, then by setting B=0 the B value need not be estimated
additionally.

The algebraic equation (9.12) can be obtained by the following two steps. Step 1, multiply
w(w,) to (9.11) and integrate the equation from ¢ =0 to ¢ = f;; Step 2, convert the algebraic
equation to (9.12) using (9.10):

a”(_ l)ny(n707w)+a”—l(_ l)n_ly(n_ 1,0,(1))+ +al(_ 1)y(1,0,0))+y(0,0,(1))
= bp(—=1)"u(m,0,0) +bp_1 (= 1) u(m—1,0,w)+ - - +bou(0,0,w) +Bb(0,0,w)
(9.12)

where y(0,0,w) = Ot" w(w,)y(t)dt,u(0,0,w) = Otf w(w, t)u(t)dt and 5(0,0,w) = Otf w(w,1)dt,
and y(k,0,0)= [(d"w(w,?)/d)y(t)dt and u(k,0,0) = [} (d*w(w,?)/d)u(t)dt for
k=1,2,...,n. Note that 5(0,0,w), y(k,0,w), k=0,1,...,n, and u(k,0,0w), k=0,1,...,m,
in (9.12) can be calculated for various w values for the given weight w(w, #). Then, the
coefficients ay, k=1,2,...,n,and by, k=0, 1,2, ..., m, from (9.12) can be estimated using the
least-squares method.

The model of n =3 and m = 2 in (9.1) can represent the dynamics of the usual processes with
a good accuracy. Then, the weight should satisfy dkw(w, O)/dlk = dkw(w, tf)/dtk =0,k=1,2,
and w(w, 0) =w(w, tr) =0. Let us introduce two examples for the weight.

9.1.2.1 Weight Example 1
Sung et al. 1998 used (9.13) and (9.14) as the weight:

w(w, t) = g(t, H)exp(—iwt) with a fixed t (9.13)

282 Process Identification and PID Control

gt 1) =f(1.51,1) — f(z,1) (9.14)

2 3 4 5
s =1+)+) (el
(9.15)

/N2 1 /3 1 /n* 11y t

flen) = {” 36 56 5@ +56) }‘”‘P(‘) (9.16)
where 7 and w are related to a time weighting and a frequency weighting respectively. The
Laplace transform of g(t, t) =f(1.57, 1) — f(t, t) is g(1, 5) = 1/[s(zs + 1% — 1/[s(1.5ts + 1)°].
1/[s(ts + 1)6] and 1/[s(1.5ts + 1)6] are the step responses of the fast process G(s) = 1/(ts + 1)6
and the slow process G(s) = 1/(1.5ts + 1)6 respectively. So, g(t, 1) =f(1.57, t) — f(z, t) satisfies
the conditions of d*g(t,7)/di*|,_o = d*g(x,1)/di*|,_, =0, k=1,2,...,5 and g(t, 0) = g(t,
ty) =0if t/7 is big enough. g(t, 1) =f(1.51, t) — f(7, ¢) determines the magnitude of the weight.
So, the weight also satisfies the required conditions of d~ w(w, 0)/dtk :dkw(w, tf)/dtk:O,
k=1, 2,...,5 and w(w, 0) = w(w, t;) =0.

It is straightforward to derive the following derivatives of the weight:

dw(w,?) dg(z,1)
dt dt

exp(—iw?) + g(7, 1) (— iw)exp(— iw?) (9.17)

Ew(w,t) d*g(t,1) dg(z,1)

E - an exp(—iwt) +2 ” (—iw)exp(—iw?) (9.18)
+g(7, 1) (— iw)*exp(— iwt)
d M;(:;’ f) _¢ ‘3(;3’ 2 exp(—iw) +3 G i(;’ 2 (— iw)exp(— iw?) (9.19)
+3 dg(r, 1) (— i) exp(— iwt) + g(t, 1) (~ iw) exp(~ iwt)

dt
where the derivatives of g(t, #) =f(1.51, 1) — f(t, ¢) can be obtained by (9.20)-(9.23):

Lo) 020
a0 m O] 020

3 1, 3 4 ex T
SO R0 mO] o

Process Identification Methods for Continuous-Time Differential Equation Models 283

9.1.2.2 Weight Example 2

Polynomials can be a candidate for the weight (Sung et al., 2001). Consider the following
weight:

w(w, t) = g(t, tr)exp(— iwt) (9.23)
4 4
ot = 1) (9.24)
Ig

where ¢;is the final time. It is straightforward to derive the following derivatives of the weight:

dW(w, l) _ dg(la tf)
dt dt

exp(—iwt) + g(t, tr) (— iw)exp(— iw?) (9.25)

dZW((,(), t) _ dzg(t7 tf) dg(t7 tf)

exp(—iwt) +2 (— iw)exp(— iwt) + g(1, r) (— iw) exp(— iw?)

a? de dt
(9.26)
d3W(w, [) ng(tv lf) . dzé’(h tf) . .
BT ap exp(—iw) + 37 (—iw)exp(—iw?) 027
dg(t.tr) . o : . :
+ST(7 iw)“exp(—iwt) + g(t, tr) (— iw) exp(— iwt)
The derivatives of g(z, ty)are as follows:
dg(1,1) 4P(t—1)* 4rt(t—1)’
g(’ f) — (g t) (g f) (928)
dr £ %
gt te) 122(1—t)" 328(1—1)° 1264t —15)*
8(2 £ _ (8 2 (8 o (8) (9.29)
dr £ £ I3
St) 28u(t— 1)t 144201 —1;) | 144°(1—)" 2414t — 1) 9:30)

3 - 8 8 8 8
dr £} 7 7 r

As shown in (9.28)—(9.30), the derivatives of g(¢, ;) are zero at t=0 and =1t So, the
weight (9.28)—(9.30) satisfies the required conditions dkw(w, 0)/dtk :dkw(w, tf)/dtk:O,
k=1,2,3 and w(w, 0) =w(w, t;) =0.

Figure 9.3 shows the magnitudes of the derivatives of the weight 1 for various @ values.
Roughly speaking, only the signal between =0 and the time corresponding to 30 times
can pass through the transform. As a result, the signals outside the range from 7 =0 to t =30t
are excluded in estimating the model parameters using (9.12).

Figure 9.4 confirms that only the signal between =0 and 7= can pass through the
transform. So, the signals outside the range from 7 =0 to ¢ = ¢; are excluded in estimating the
model parameters using (9.12).

284 Process Identification and PID Control

0.4 1
= 02 S 05
- S
0 0
0 10 20 30 0 10 20 30
t't 't
0.8 1
_ 06 _
NN (‘2.‘
ke) o
s 04 s 05
a (3]
© ©
- 0.2 -
0 0
0 10 20 30 0 10 20 30
't 't

Figure 9.3 Magnitudes of the derivatives of weight 1 for various w values.

x 1073 x 1078
- 6
- 3
22 3
©
0
0 10 20 30
t t
0.01; 0.01
a c'):
< 0.005¢ < 0.005
(s} (3]
ke kel
0 0
0 10 20 30 0 10 20 30

Figure 9.4 Magnitudes of the derivatives of weight2 with ;=30 for various w values.

Process Identification Methods for Continuous-Time Differential Equation Models 285

3 4
o —

2
1
0 0

[u(0,0,w)l
lu(1,0,w)

0 1 2 3 0 1 2 3
(0] w
6 8
_ _ 6
T4 T
=) S 4
Al [32)
S 2 1
= =2
0 0
0 1 2 3 0 1 2 3
(0] w

Figure 9.5 Magnitudes of the transformed signals by weight 1.

0.04 0.06
S T 0.04
S 0.02 S
o ~—
=1 S 0.02
0 0
0 1 2 3 0 1 2 3
[0) w
0.08 0.2
_ 0.06} _ 0.5}
= =
S 0.04} S 04}
o)
3 =]
- 0.02} = 0.05}
0 0
0 1 2 3 0 1 2 3
[0) 0]

Figure 9.6 Magnitudes of the transformed signals by weight 2.

Figures 9.5 and 9.6 show the magnitudes of the transformed signals using weight 1 and
weight 2 for the following two signals:
ui () = cos(1.5¢) + sin(1.5¢) + cos(10¢) +sin(10¢), uy(¢) = cos(1.5¢) + sin(1.5¢)
(9.31)

286 Process Identification and PID Control

The plots for u;(¢) and u,(7) are almost identical even though the high-frequency term cos
(107) + sin(10¢) is included only in u,(7), meaning that the transform amplifies the signals of
the specified range of the frequency w (in this case, from w =0 to w =3) and filters out the
other frequency signals belonging outside the range. So, if the model parameters of the
algebraic linear equation (9.12) are estimated using the least-squares method for frequencies
(w=wy, k=1,2,...) within the desired frequency region, then the model parameters will be
adjusted to approximate mainly the desired frequency region.

The recommendation is n =3, m =2 for the model structure and t = #/30 for weight 1.
Also, the desired frequency range from w =0 to w = 127/t; is recommended for weight 1 and
weight 2. Note that the initial part of the setpoint change or relay on—off includes many
frequency components. So, if the relay feedback method or a proportional controller is used
to activate the process, then the starting time should be ¢t = 61 for weight 1 and = #3 for
weight 2 to assign a big weight to the initial part.

Example 9.2
Activate the SOPTD process G,,(s) = exp(— 0.55)/(s + 1)2 using a P controller with a gain of 2.
Also, obtain the process model using the integral transform with weight 1.

Solution Figure 9.7 shows the activated process output by the P controller with a gain of 2.
The 10 desired frequencies chosen are located equally between w = 0 and w = 127/¢;. Note that
the initial process output is not in a steady state. Nevertheless, the process identification method
shows a good performance, as shown in Figure 9.8. The MATLAB codes to simulate Example
9.2 are shown in Tables 9.3 and 9.4.

10 15 20 25
t

Figure 9.7 Activated process output and input by a proportional (P) controller.

Note that y(f) and u(¢) are not independent if the setpoint is not changed, because it is a
closed-loop process activation by the P controller u(f) =k (y,(t) — y(z)). Then, the least-
squares method would fail because of the singular problem originating from the dependence
of y(?) and u(z). So, the process data must include the instance of the setpoint change to

Process Identification Methods for Continuous-Time Differential Equation Models 287

0.2

process

-0.8 : : :
-0.5 0 05 1 15

Re(G(iw))

Figure 9.8 Identification results of the process identification method using the integral transform
with weight 1.

guarantee the independence between y(7) and u() for a successful identification. It should also
be noted that process identification is impossible for the same reason if the setpoint of the
P controller changes at = 0. That is, the independence between y(¢) and u(#) by the setpoint
change is eliminated because the weight function assigns a zero weighting to the initial part.

Example 9.3

Activate the SOPTD process Gy(s) = exp(—0.5s)/(s + 1)2 using a biased-relay feedback
method. Also, obtain the process model using the integral transform with weight 1. The
measurements of the process output are contaminated by uniformly distributed random noise
between —0.05 and 0.05. Also, a static input disturbance of 0.1 enters.

Solution Figure 9.9 shows the activated process output by the biased-relay feedback method.
The process identification method using weight 1 shows an acceptable robustness for the
measurement noise and the disturbance, as shown in Figure 9.10. The MATLAB codes to
simulate Example 9.3 are shown in Tables 9.5 and 9.6.

Example 9.4
Activate the SOPTD process G,,(s) = exp(— 0.55)/(s + 1)2 using a P controller with a gain of 2.
Also, obtain the process model using the integral transform with weight 2.

Solution Figure 9.11 shows the activated process output by a P controller with a gain of 2. The
10 desired frequencies chosen are located equally between w = 0 and w = 121/#;. The process
identification method has a good performance, as shown in Figure 9.12. The MATLAB codes to
simulate Example 9.4 are shown in Tables 9.7 and 9.8.

Remark 1f B=0 is fixed, then the process identification method would show a poor
performance for a static disturbance.

Process Identification and PID Control

288

6000°0-
€T00°T
9TvE 0-
Zs70°0
L98T"¢C
T9LE T
6¢6T°0
=3ey g
TST LI Snonutluod <<

MOPUTM PUBUWOD

uIiniax
!Xy D=A X=X 1X9U
pus

{1 TopQNns x XpP+X=X

! (T AeTopP-000T) NxE+Xx¥=XP
U:T=T I0J
{(31op/AeTop) punoa=y Aelep
‘Gro=Aetep ‘[T 0]l=D [0 ¢ T]l=€ ‘[z-T ¢ 1-0]=¥
£ (3TePAns/3TopP) punoi=u QT /3TopP=3T9pans
{(n’aT7ep‘x) IST LI sSnonurjuod b=[A’‘x 3xau]
uoT3ounjg

w*TST LI Snonutjuod b

gu:1=T 103
£(T-Ju) /xeumy (T-3) = (3) M

Ju:=3 103
pus
£0°0=(D0 M0 0=0D2 N0 0=CDT A0 0=00)0 N
070=(DEX0°0=CDZ X{0°0=CDT X/0°0=0G00 X
Ju:T=3 103

{0T=3Fu {33 /TdyxgT=XPUM
{(T/0) xoTdwon=C

{(shA‘33/AK“33/nn’33)301d ¢ (1) 2anby
pus
f(ejep n/3TopP’X) IST LI SNONUT3UO0D b=[A’X]

n=(T00T)E3IEP N {Nn=(T)n0n
pus
{(1+0)ezep n=(L)e3zep n
000T:T=C 103
{(K-sk) 40" z=n
pus {0 T=SA (9xNe3)<3 IT
!sh=(1)sAA {13=(T1)33 {A=(T)RA
13T9P«T=2
Uu:T=T I0J
{(T00T‘T)soxsz=e3ep N
10=A {0 0=sA !0 0g/3F3=nr]
!Tesndy (TX) AUT=X
![¥«D {0]1=Tx {[G 0 ‘g 0l=Tesnd
G o=Aetrep {[10]=D ‘[0 ‘1l=4 ‘[z-T1¢1-0]=¥
{(3T®P/3F3)puUnoi=u {Gz=33 {Z0 0=31°P
.\Mmmﬁo

w*TST LI Snonutjuod

76 d1dwexy Jo worqoid uonewnsd ay) JA[0S 0} 9pod GV IIVIN €76 2ldeL

289

Process Identification Methods for Continuous-Time Differential Equation Models

(panunuos)

! (Axmy-) dxo0b=m0P

f(T’0) xoTdwoo=C
nej” yp=yb
ne3” yp=¢b
ne3” yp=¢b
nej yp=16
1) 3p- (1) ne3” yp=0b

-(9)
-(7)
-(€)
-(2)

IS

33 (3)UIP/(NeI4G T73)FUu P & ¢/ (NBI4G T /3) TUIP JUup=[ne3 Jp]

urt TUIpT MUp

3 3e (3)u,ap/(nel ‘) Juyp & ¢ (nel1 ‘) Tulp” Jup=[JIpP]
(ne3 “m“1) TUIP” MUP=MUP UOT3OUNJ

(Xx ,IHd) x (IHdx ,IHd) AUT=31®Y 4

pus
(3) 0" M) bewT= (/£ ‘3{+IU) THA ¢ ((3) 0" M) Te=sa= (L ‘3) IHd
(3) 07 n) bewt=(9 ‘3{+IJU) IHA * (()0 N) Te=I=(9 ‘3) IHd

(()

(()

) T N)bewT-=(G 3 +3U) IHd ¢ (() T N) Teex-=(G ‘) IHd
(3() Z7n) bewT=(§ ‘3+3u) IHd ¢ ((3) " n) Te2x=(¥ ‘3) IHd
(3) T7 &) bewt= (¢ “>+3u) THA ¢ (()
) 27 X)bewrt-=(zq+3u) IHd ¢ ((A)
S((3) € R)bewuT= (T 3+3u) IHA ¢ (()

£((3) 07 X)bewT= (1 ‘3+3u) X

M) T X) Tesx=(¢ ‘) IHd
) 2T X) Te2I-=(Z ‘) IHd
)€ X)) Tesa= (1) IHd
S 0T X)) TRRI=(T) X

pus
TP« (T) MUP+ () 0" M=(X) 0 M
{3T9Px (T) NNy (€) MUPH () 2 N=(X) 2" N
\pHmU*AHVss*Aszcu+A)T =0T 0
TP (T) Ny (T)MUP+ () 0 N=(3)0 N
\uHoU*AHV>>*Aqucv+A)ETR=() €&
31D« (T) ARy (g) mup+ () 2~ A= () 2~ &
AToPx (T) ARy (Z)MUup+ () T A= T X
\pHoU*AHV>>*AH sc@+A)0 A=) 0" &
{(nex’ ()M 1) TUIP” MUp=[MUP]

Process Identification and PID Control

290

uIrnjlox

uIinisax
- - - 1Z30/(3)32P 3P/ () FIP “(3)F & {[FPP {FEP {FZP {FTP {FOP]=
{po(nel) /(neld/3-)dxoy (G, (Ne3/3) x0°02T/T+bv (NBI/3) x0°8/T-€v (MBI /) x0° 2/ T+2 (N€I/23) x0°2/T-) =3 PP
‘g (ney) /(ne3/3-)dxoy (G, (N3 /3) x0°02T/T-7v (MBI /) x0°CT/T+Ev (N€I/2) x0°9/T-) =F€EP
{zo(ney) /(ney/3-)dxey (G, (NB3/3) x0°0ZT/T+b. (MBI /3) x0°FZ/T-) =3P
‘ney/ (ne3/3-)dxoxG, (Ne3/3) x0 02T/ T-=FTIP
f(nea/a-)dxex ((G) I/ (Me1/2)+(F)T/Fv (nR2/2) +(€) I/ (MRA/A)+(2) T /2w (NRI /) +0R] /2+T) =T 0P
(ne3 ‘1) TUlP JUP=3Fp uotTioung

W Tulp Jup

x0D+ (Axmy L) dxosg, (Mx[-) x TP+ (Axmyx[-)dxayz, (m

uInleI
---1/23p/(3)MzZP ‘Ap/ () MP ‘1 (A) M g ! [MPP {MED {MZP {MTIP {MQP]=MUD
f(Axmy o) dxoyp, (My (o)
x0-) x€Bx P+ (3xmy[-) dxoyyb=mMpD
x0-) xZBxc+ (F4my [-) dxoch=MED
*x[=) xTDxz+ (3 xmy () dxozh=mZD
(MyL=) x 0B+ (Axmy[-) dxa, TO=mTp

x0=) 4 2Bxo+ (Asmy L) dxoy (

f(3xmy o) dxoye, (Mg o) « 0B+ (3smy [-) dxO4 T, (Mx[-) IO+ (3 xmy () dxoy (
f(Aemy o) dxoyzy My =) x 0B+ (Fxmy [-) dxoy (

f(3xmy[-)dxay

M
M
M

(ponutiuol) €6 dqeL

Process Identification Methods for Continuous-Time Differential Equation Models 291

Table 9.4 MATLAB code to draw Figure 9.8.

nyquist_continuous_IT_LS1l.m

del_w=0.01; wmax=pi; n=round (wmax/del_w) ;
for i=1:n

w=(i-1)*del_w;

s=j*w;

gjw=exp (-0.5*s) / (s+1) "2;

gjw_P_hat=(P_hat (4) *s"2+P_hat (5) *s+P_hat (6))/ (P_hat (1) *s”3+P_hat (2)
*s”2+P_hat (3) *s+1) ;
Re (i)=real (gjw); Im(i)=imag(gjw) ;
Re_P_hat(i)=real (gjw_P_hat); Im_P_hat(i)=imag(gjw_P_hat);
end
figure (2) ; plot(Re, Im,Re_P_hat,Im_P_hat,’:’);

command window

>>nygquist_continuous_IT_LS1

t

Figure 9.9 Activated process output and input by an input-biased-relay when the measured data are
contaminated by the measurement noise.

9.2 Prediction Error Identification Method

Sung and Lee (2001) proposed a prediction error identification method to obtain a combined
deterministic—stochastic continuous-time multi-input—single-output process model with time
delays. Here, the method is simplified to the case of a deterministic continuous-time single-
input-single-output process model with time delay. It identifies the model parameters by
minimizing the prediction error using the Levenberg—Marquardt optimization method with the
exact derivatives of the objective function with respect to the adjustable parameters. Compared

292 Process Identification and PID Control

0.2

process

-0.5 0 0.5 1 1.5

Figure 9.10 Identification results of the process identification method using the integral transform with
weight 1 in Example 9.3.

with discrete-time identification methods, it does not suffer from the small sampling time
or irregular sampling problem. Also, it can be applied to a large sampling time that cannot
be incorporated by the previous continuous-time approaches using transforms. It can
also identify the time delay term and the other model parameters simultaneously in a
systematic way.

9.2.1 State-Space Process

Consider the following state-space representation:

dx(f)
TR Ax (1) + Bu(t—0) (9.32)

y(t) = Cx(1) (9.33)

where u(t—6) and y(¢) denote the delayed process input and the scalar process output
respectively. x(¢) is the n-dimensional state. The objective of this method is to estimate the
matrices A, B and 0 from the discrete-sampled-output data and the given process input.

000 -0 —a
1 00 -+ 0 —ay,,
010 - 0 —a

a=| (9.34)
000 0 -a
0 0 0 (I

293

Process Identification Methods for Continuous-Time Differential Equation Models

(panuuod)

€£€560°0
6600°T
Z28v€"0-
0CZv0°0
GZ9T" ¢
e T
98€T°0
=13y 4
ZST LI Snonutijuod <<

MOPUTM PURUWOD

uIrnisa
!Xy D=A !xX=X]1X3U
pus

11 7oPONS x XP+X=X

f (3T AeTPP-000T) Nxd+Xx¥=XD
u:I=T I0J
! (aTop/AeTep) punoa=y_ AeTsp
‘gro=Aetep {[10]=D /[0 ¢ T]l=d ‘[z-T*1-0]=¥
{(3T9PAns/3aTepP) punoI=u QT /31TeP=3T=pqns
{(n“31T9p“x) ZST LI Snonurtiluod b=[A‘x 31xau]
uoTtloung

Ww*zST II sSnonurjuod b

!{3JJO d+4uUo d=4d
‘n=(T)nn {sTP+n=(000T) &3P 0
pus ! (T+0)e3ep n=([)e3ep nge6:1=L 103
pus
pus {0 T=n (T==dn"xopuT)JT
pus {0 T-=0 (IT==UMOpP XSpUT)JT
(T==xspuT) IT
pus
pus
!T+du=du {uo 3-330 3=U0 g {3=3J3JO0 2
{T=umOp” XOpUT {Q=dn” xopuT
((s&u+321h)=>(1-T) KA 3 (sAy+3e1k) <(T)AA
3)==UMOP XOpUuT 8 T==dn” xopuT) JIT
pus
{3307 3-U0 3=JJ0 4 ‘3=uU0 3
{0=UMODP” XSpUT ! T=dn” xXspuT
((sAy-3Foak) < (1-T)KK 8 (sAy-Foxk)=> (T)AK
® 0==dn” XOPUT ® [==UMOP XOPUT) IT
(T==x°puT) IT
PUS {puUS {T=X9OPUT (BITOP A<A)IT
{0°T=n ((ne349)<3 3 0==X°pUuT) IT
3=(T)33 {Foxh=(T) FoakA
! (T)osTOU+A=(T) AKX 1379D4T=3
u:T=T I0JF
{0°0=0 {170« (G 0-(Uu’T)puea)=ostOoU ! (Q‘,pPS9s,)pueI
{0=umop” X9pUT {T=dn” xopuT {1 Q=SAY
T=xoput:aseyd AeTax
‘0=xopuT:oseyd TeTITUT & {Z°(0=LITOP A {Q=XopuT
!1°0=STP ‘0=du !, 0=3F21k {0 0=A
{0=330 4 ‘0=U0 4 ‘0°0=330 3 {0 0=U0 1
!(T’z)soaez=x ! (Q00T‘T) soasz=e3EpP N
{0°0€/33=ne] ! (3T°P/F3)puUnoa=u 0g=33 ‘10°0=37T°pP
{Ie9T0

w*'zST LI sSnonutiuod

'¢"6 91dwexy jo wojqoid uonewnsd ay) JA[0S 01 9pod GV IIVIN S°6 2IqeL

Process Identification and PID Control

294

(X% ,IHA) » (IHdx ,IHJ) AUT=3RY g

Prus
L) 0 M) BewT= (L ‘q+JU) THA ¢ ((3) 0 M) Te2I=(L ‘) IHA
S((31) 07 n)bewT=(9 “3+3u) IHd ¢ ((3) 0 n) Te2I=(9 ‘3) IHA
(3) T7n) bewt-= (G “>{+3uU) ITHd ¢ (() T Dvamwylnﬁm 3) IHd
£(()z n)bewT= (% ‘q+JuU) THA ¢ (() 2 N) Te2I= (% ‘) THd
L) T X)bewT= (¢ 3+3u) IHd ¢ ((3{) T X) Te®I=(¢ ‘¥) IHA
(%) Z7A) bewT-=(Z “3+3U) IHd ¢ (() Z— wvamwglnﬁm) IHA
L) € R)bewT= (T 3+3u) THA ¢ (() € vﬂmwu (T“¥) IH4
(0D 0T R)BRUT=(TS+FU) & ¢ ((A) 0 X) Te2a=(T'3) X
pu=
{AToPx (T)MUp+ () 0" M= () 0" M
TP (T) Ny (€)MUP+ (M) 2 N=(3)Z N
3TOP« (T) Ny (Z)MUp+ () T N=() T" N
{379« (T) Ny (T) MUP+ () 0 N=() 0" N
31O« (T) ARy (§) mup+ () € A= () €™ &
ATOP« (T) ARy (g) mup+ (31) 2~ X=(3) T° X
3ToPx (T)RAx (Z)MuUp+ () T- X=() T” X
31O« (T) AR (T) Mmup+ () 0" A= () 0" &
f(nex’ ()M 1) ZUulp” mup=[Mup]
{3TopPxT=3
Uu:T=T I07J
(T-3Fu) /xeumy (T-3) = ()M
Ju:T=3 103
pu=
0°0=CG10 M0 0= N0 0=CDT N0 0=010 N
0°0=0CDEA0°0=CDZ A0°0=CDT 20°0=0C10 X
JU:lT=3 I07J

{(FoxhA 33 KA “33nn‘33)30Td ¢ (1) 2anby
pus
f(e3ep n‘3TopP’X) ST LI SNONUTIIUO0D b=[A‘X]

(ponunjuo)) §'6 dlqeL

295

Process Identification Methods for Continuous-Time Differential Equation Models

uIniox
pua
{TyS=s
u:l=T JIOJ
{0 T=s
jug (u)JI=[s] uoryounyg

uInjox
‘2ap/ (3)3zZe AP/ (1) FP ‘() F % {[IFP f3eEp fFZP YITP ‘F0P]=TP
‘py(nel) /(ne31/3- V X9 A Gv(MP1/3) x0°02T/T+¥v (NB/3) 0" m\ﬁ|m<Azmu\uv*o Z/T+2.(ne1/2) x0°2/1-)=3¥P
v(ne3) /(ne3/3-)dxoy (G, (0®3/3) x0°02T/T-Fv (M€3/3) x0°CT/T+Ey (MBI/3) x0°9/T-) =F€P
{zv(ney) /(ney/3-)dxoy (G, (Ne3/3) x0°0ZT/T+F. (NBI/3) x0°¥Z/T-)=3FCP
‘nel/ (ne3l/3-)dxeG, (Ne3/3) x0°02T/T-=F1P
f(ne31/3-)dxey ((§) 3/6. (N3 /) +(¥) /b (n@I/2) +(€) F/€v (N€A/2) +(2) F /T (B /) +0BD/2+T) =T 0P
(ne31“3) zulp Jup=Jp uoTIOUNT
w Zu3lp T Fup
uIniox
- - = 1230/ (3)MZP AP/ (A)MP ‘()M I [MFP IMED IMZP {MTP {MQP]=MUP
f(3xmyxb-)dxoxpy (M=)
0P+ (Fxmy L) dxoye, (MyL-) « IO b+ (3aty [-) dxO4 Ty (Mx[-) 42049+ (3xMmy () dxoy (My L) v €Dy F+ (FxMy [-) dROFO=MpD
f(Axmylo)dxoye, My Do) x 0B+ (Fxmy L) dxo4Z, (Ms[-) IO+ (Axmy[-)dxoy (My (=) v 2Dy e+ (FxMmy [-) dxOch=mMcD
f(3amxC-)dxoyxzy (Mel=) x 00+ (3xMy =) dXOy (Mx0=) xTOxZ+ (3xMy [-) dxD 4 gb=m7P
f(Aamy L) dxoy (my (=) x 0B+ (3xmy (=) dxO 4, TH=MTD
f(3xmy[-)dxoy0b=mop
{(1'0) xoTdwon=C
{(G) 3p-(G)ne3 yp=pb
! (p) 3p-(p)neld” Jp=¢cb
! (¢)3Ip-(g)ne3”yp=cb
‘(2)3p-(z)ne3 gp=1b
(1) 3p-(1)ne3” Jp=0b

33e () u3Ip/ (N3G T73)JU,P & ¢ (NBI4G T /3) CUlp Jup=[nel Ip]
33e (3)u,ap/(nela’a)yuep s ¢ (nel1’l) zulp Jup=[IpP]
(nel‘m’3) zulp MUP=MUP UOT3OUNJ

W Zu3pTMup

296 Process Identification and PID Control

Table 9.6 MATLAB code to draw Figure 9.8.

nyquist_continuous_IT_LS2.m

del_w=0.01; wmax=pi; n=round (wmax/del_w) ;
for i=1:n

w=(i-1)*del_w;

s=j*w;

gjw=exp (-0.5*s) / (s+1) "2;

gjw_P_hat=(P_hat (4) *s"2+P_hat (5) *s+P_hat (6))/ (P_hat (1) *s”3+P_hat (2)
*s”2+P_hat (3) *s+1) ;
Re (i)=real (gjw); Im(i)=1imag(gjw) ;
Re_P_hat(i)=real (gjw_P_hat); Im_P_hat (i)=imag(gjw_P_hat);
end
figure (2) ; plot(Re, Im,Re_P_hat,Im_P_hat,’:’);

command window

>>nyquist_continuous_IT_LS2

10 15 20 25

Figure 9.11 Activated process output and input by a proportional (P) controller.

B=|b, by_y by_o - by b]" (9.35)
C=[0 00 --- 0 1] (9.36)

The state-space process (9.32)—(9.36) is equivalent to the following transfer function if the
process is initially in a zero steady state:

bis" ' £ by 24 -+ b, 15+b,
G(s):&: 1t 2:V R/ el Clas exp(— 0s) (9.37)
u(s) s'tars" - a5+ a,

Process Identification Methods for Continuous-Time Differential Equation Models 297

0.2

process

0.5 0 0.5 1 15
Re(Glio)

Figure 9.12 Identification results of the process identification method using the integral transform
with weight 2.

For more details on the state-space model, refer to Chapter 1.

9.2.2 Continuous-Time Prediction Error Identification Method

The prediction error identification method in this section estimates the model parameters by
solving the following nonlinear optimization problem:

L 05
min |V(A,B,0) = Z

> 3 9.38
min N 2 =3 (9.38)
subject to
dx(s) - . .
z(t) = A%(t) + Bu(t — 0) (9.39)
y(t) = Cx(1) (9.40)
th=0<t1<---<ty_1<ty (941)

where y(f) and () denote the process output and the model output respectively. To solve
this optimization problem, the Levenberg—Marquardt method is used, which repeats (9.42)
until the parameters converge.

pG)=pG—1)— [82‘/(};32_1)) +a1] - {W} (9.42)

p=la @ o a, by by o b, 0T (9.49

Process Identification and PID Control

298

G000°0-
8000°T
0cve"0-
6770°0
€981°¢
€GLE"T
76170

=3ey 4
€ST II Snonutjuod <<

MOPUTM PURUWOD

uInisx
!Xy D=A X=X 1x9U
pus

{1 TopQNns x XpP+X=X

(T AeTepP-000T) Nxg+Xx¥=XP
Uu:I=T I0J
! (ATop/AeTop) punoi=y_ AeTsp
‘{Ggro=Aetep [T 0l=D0 ¢[00 ‘T]l=€ ‘[z-T ¢ 1-01l=¥
£ (3TePAns/31TepP) PUNOI=u {QT/3TOP=3T=pPqns
{(n’aT79p ‘%) €ST LI Snonurjuod b=[A‘x 3xau]
uoT3ounjg

ure€sT LI Snonurtiluod b

ATePxT=3
U:T=T 107
((T-FU) /xewmy (T-3) = ()M

Ju: =Y 103
pus
0°0=CGDo Moo=z N0 0=CNDT N0 0=()0 N
0°0=CDEA0°0=CNDZTX0°0=CNDT X0°0=01)0 X
Ju:T=3 103

{0T=3u /33 /TdyzT=xPUM
!(110) xoTdwoo=C_

! (sAA'33 /AR ‘33 /nn‘313)30Td ¢ (T)2anb1g
pus
{(e3ep N/3TOP’‘X)€ST LI SNONUT3U0D b=[A’X]

M=(T00T)®3IeP 1 ‘n=(T)nN
pus
{(1+0)erep n=(L)e3ep ™ n
000T:1=C x0%
! (K-sK) x0"z=n
pus {0 T=sA& (0°€/33)<3 IT
{sA=(T)sAR 13=(1)33 A=(T) KK
{3T9P«T=2
u:T=T I03J
!(TO0T“T) soxez=e3ep N Q=K) 0=sk
!Tesndy (TX) AUT=X
f[¥xD #D]1=Tx {[G 0 ‘g€ 0]=Tesnd
‘Ggro=Aetep ‘[T 0l=D0 [0 ¢ Tl=4d ‘[Zz-T ¢ 1-0]=¥
{(3T®P/33) PUNoOI=u {Gz=31 {Z0"0=3T°P
Hea-Iohge)

w*¢gT LI Snonurtijuod

b6 9rdwexyg jo wojqoid uonewnsd ay) JA[0S 01 9pod GV IIVIN L°6 2IqeL

299

(panunuod)

uinisx
- - - 123/ (3)MzP AP/ (I)MP 1 (F)M g L [MEP IMZD IMTP YMOP]=MUD
LAy o)
dxosgy (Mxl=) « (T) IO+ (3xMy (=) dxOxZ, (Mx L) 4 (Z) TP£E+ (F4My L) AXOy (My (=) 5 (€) IPE+ (FIxMx [-) dxO4 () FP=MCP
f(F3amyx Lo)dxoyzy (Mal=) 4« (T) IO+ (FxMy L-) dxoy (MxL=) 4 (2) IPxZ+ (3xMy [-) dxDy (€) FP=MZD
f(Aemy L) dxo, My 0-) 5« (T) IP+ (Fxmy [-) dxoy (7) IP=MTD
! (3xMy L-)dxoy (T) IP=M0P

{(T/0)xoTdwoo=C
33e (3)u,3ip/(nel3’a)Juep ¢ ¢ (3373) culp Fup=[Jp]
(F3/m‘3) cUlpP” MUP=MUpP UOTIOUNT

u° ulIpTMUp

Process Identification Methods for Continuous-Time Differential Equation Models

(X% ,IHA) » (IHd % ,IHJ) AUT=3RY g

pus

S((31) 07 M) bewT= (L “3+3Fu) THA ¢ ((3) 0 vﬂmmu (L*¥) IHa
£((31) 07 n)bewT=(9 “3+3u) IHA ¢ ((3) 0" n) Te2I=(9 ‘3) IHA
(G T n)bewT-= (g +3u) THA ¢ ((3) T DvﬁmwulnAm 3) IHd
S(() 2 n)bewT=(§ ‘q+JFu) IHA ¢ ((3) 2 N) TeaI= (¥ ‘) IHd
S((3) T X)BewT= (¢ 3+3u) IHd ¢ ((3) T X) Te2a=(¢ ‘3) IHA
S () 2 R)bewT-=(z‘3+Ju) IHd ¢ (() Z X) TeoI-=(Z‘¥) IHd
S0 € R) bewT= (T “>{+3u) THd ¢ ((31) |wvﬂmmu (T“¥) IHA
L) 0 R)bewT=(T/3(+3u) X ¢ (() 0" &) TedI=(T“Y) X
pu=

{3790« (T) MUPH () 0 M= () 0" M

379D« (T) Ny (€) MUP+ () 2 N=() 2" N

TP (T) 0y (Z)MUP+ () T N=(3) T N

3T9P« (T) 0y (T)MUPH+ () 0" N=() 0" N

3T9Px (T) ARy () MU+ () € A= () € &

13T9P« (T) KAy (g)Mmup+ () 2 X=({) 2 X

3T9Px (T) ARx (Z)Mup+ () T A=() T™ &

3T9Px (T) AR (T) MUP+ () 0~ A= () 0" &

{(F3 ()M 3) cUIP MUP=[MUP]

Process Identification and PID Control

300

uinlsx
---1‘z7ap/ () 3zP 3P/ () FP ‘() F s {[FEP {IZP {FTIP {FOPI=3FP
18033/ (F3-3) «Fu3IxPZ+80F3/2v (FI-2) x€LFIxFPPT+80FF/Ev (FI-3) xZuIxPFT+8.FF /P (F3-3) xIxPZ=F€CP
180F3/2(F3-3) xPvIxZT+8.FF/E€0 (FF-3) x€uIxZE+8VFF/Fv (FI-3) xZu3x2T=3CP
18uF3/€0(FI-3) x P IxP+8L T/ TV (FI-3) xELIxP=FTP
18033 /% (33-2) xPv3=30P

(33/3) €U3lp FUp=JFp uoT3IOUNJT

w* gulpTIUp

(ponunjuo)) L6 dNqeL

Process Identification Methods for Continuous-Time Differential Equation Models 301

Table 9.8 MATLAB code to draw Figure 9.12.

nyquist_continuous_IT_LS3.m

del_w=0.01; wmax=pi; n=round (wmax/del_w) ;
for i=1:n

w=(i-1)*del_w;

s=j*w;

gjw=exp (-0.5*s) / (s+1) "2;

gjw_P_hat=(P_hat (4) *s"2+P_hat (5) *s+P_hat (6))/ (P_hat (1) *s”3+P_hat (2)
*s”2+P_hat (3) *s+1) ;
Re (i) =real (gjw) ; Im(i)=imag(gjw) ;
Re_P_hat(i)=real (gjw_P_hat); Im_P_hat(i)=imag(gjw_P_hat);
end
figure (2) ; plot(Re, Im,Re_P_hat,Im_P_hat,’:’);

command window

>>nyquist_continuous_IT_LS3

where j denotes the iteration number and « is a small positive value that can be updated
every iteration to compromise between the robustness and the convergence rate. For details,
refer to Chapter 2.

The initial values for the Levenberg—Marquardt optimization method can be determined
roughly by previous approaches. For example, the continuous-time (or discrete-time) high-
order autoregressive exogenous input (ARX) model using the process identification methods of
Section 9.1 (or Section 10.2) is obtained and the high-order model can be reduced to a
continuous-time low-order plus time-delay model using the model reduction (or conversion)
methods of Section 5.8 (or Chapter 11). Then, the low-order plus time-delay model obtained
can be used as the initial parameters for the Levenberg—Marquardt optimization method.

The partial derivatives of the objective function with respect to the adjustable parameters
in (9.42) can be calculated by the numerical derivative or solving the differential equations.
Refer to Chapter 2 for the numerical derivative. Consider the following to understand how to
calculate the partial derivatives by solving the differential equations.

From (9.38), (9.44) is derived:

(3]
<
%\
Il
I
=z =
\<>
@J
—
~
:_/
—~
\O
~
N
~

op
a9(r) _ [95(1) M) H@) @) FN]
p { da 3y b, b, ae} (5:45)

302

Process Identification and PID Control

[P0 s P) ()]
da, day 0410, 3, 9b, 8¢, 0b, 3@, 00
Fy() o F) Fy) P)
a&n 8211 a&n a&n 8&71 827 1 321,, 3[7,, a&n aé
ap* ab, 0a, b, 0@, 9b,db, b, 0b, b3
Py F) Fy) P)
ob,da, 9b,da, db,0b; 9b,db, 3b,00
Fy() d) Fy) B)
| 909a, 009a, 309b, 300b, 9096 |

From (9.39) and (9.40), (9.48)—(9.58) are obtained:

dr

() _ 050 Fil) P

~ ~ Y ~ A7i7.7:1727'”52n+1 9.48
p op 9p;9p; ap;0p; / 548)
d [9x(1) ~ 0x(1) .
— =A—~ —Gy(t), k=1,2,... 9.49
dl(a&k> a&k ky()7 9 &y ,n ()
d (E)xf’)) _ 350 +Gu(t—6), k=1,2,...,n (9.50)
dr \ oby by
d (ax(f)> _ 080 poult —6) (9.51)
dr\ 90 0 0

Aazfc(t) G 1)

825c(t)>

dada;) daoar ! day 3
(9.52)

d /8*x(t - Px(t (¢
—<ﬂ) O R I S S S (9.53)
A ob,da, b,

d [9*x(¢ - 9% x(t (¢

—(LQ):AAL(A)—G,(LA), k=1.2,....n (9.54)

dr \ 96aay 300, 30

Process Identification Methods for Continuous-Time Differential Equation Models 303

d [9%%
—(fc(f)):o, k=12,....n I=kk+1, ...n (9.55)
dz \ 8b,;9by

2 22 iy
5(%@) AT G WU=0) (9.56)
dr \ 900hy 909by Y

d [*x(t . 2x(t FPu(t— 0
—< x(2)> —A ’f§)+3 ”(Az %) (9.57)
dr \ 59 30 30

Fx(t) Px(1)

7000 ~ 3500 b, ¢ = i, by, 0 (9.58)
where
T
Gi=10 0 -« 1.0 --- 0
k

has 1 for the n —k + 1th component and O for the others. The initial values of all the
derivatives of the state X(7) are zero because the parameter of p does not affect the initial
values of the state. The derivative of u(f — 9) in (9.51), (9.56) and (9.57) with respect to 6 is
calculated using

ou(t— 0 du(t—6 Pu(t—0) Fu(t—06
u(- 0) _ u(0)’ u(A2 0) _ u(t—0) (9.59)
a0 dt 90 or?

With a numerical derivative, (9.59) can be calculated from the given process input.

In summary, X(¢;) and all the derivatives of the state are calculated for the given p(j — 1) by
selecting them at every #; while continuously solving the ordinary differential equa-
tions (9.39) and (9.49)—(9.57) simultaneously. Then, it is straightforward to calculate the
updated parameters p(j) from (9.42). The whole procedure is repeated until the parameters
converge.

Example 9.5

The following continuous-time process with time delay is simulated to confirm the identifica-
tion performance of the prediction error identification method for the continuous-time
differential equation model:

Ey(r) | dy()

+2—= +y(t) =u(r—0.5) (9.60)

304 Process Identification and PID Control

-0.5 1 1
0 5 10 15
t

Figure 9.13 Process input and output activated by a P controller.

0.1

process

Im(Glie)

Figure 9.14 Identification results of the prediction error identification method.

The process is activated by a P controller for which the setpoint is changed at = 1. The
process output is contaminated by uniformly distributed random noise between —0.05 and
0.05. The sampling time is 0.02.

Figures 9.13 and 9.14 show the activated process input and output and the identification
result. Figure 9.14 confirms that the prediction error method provides acceptable performance
under the circumstance of the measurement noise.

The MATLAB code to solve the estimation problem in Example 9.5 and draw Figure 9.14 are
shown in Tables 9.9 and 9.10 respectively. Table 9.9 uses numerical derivatives to calculate the
partial derivatives 8>V (p(j — 1))/8p* and aV (p(j — 1))/3p in (9.42).

Process Identification Methods for Continuous-Time Differential Equation Models 305

Table 9.9 MATLAB code to solve the estimation problem using the prediction error
method in Example 9.5.

continuous_PEM1.m

clear; delt=0.02; tf=15; ys=0.0; n=round (tf/delt) ;
al=2.0; a2=1.0; b1=0.0; b2=1.0; delay=0.5; $process
C=[01]; x=[0; 0]; y=0.0; u_data=zeros(1,1001);
iter=0; rand(’seed’,0); noise=(rand(1l,n)-0.5)*0.1;
for i=1:n

t=i*delt; yy(i)=y+noise(i); tt(i)=t; yys(i)=ys;

if (t>1) ys=1.0; end

u=2.5* (ys-yy(i));

for j=1:1000

u_data(j)=u_data(j+1);

end

uu(i)=u; u_data(1001)=u;

[x,y]=g_continuous_PEMI (x,delt,u_data,al,a2,bl,b2,delay);
end
figure (1) ; plot(tt,yy,tt,uu); legend('y(t)’,"u(t)’);
% starting PEM
al=3.5; a2=5.0; b1=0.0; b2=1.5; delay=0.0; $initial values of model
delta=0.0001; del_delay=delt; %$interval for the numerical derivatives
alpha=10.0; index_update=1;
Pb=[al a2 bl b2 delay]’;
E=object_PEMLIL (uu,yy,delt,tf,al,a2,bl,b2,delay);
fprintf ('iteration=%2d al=%6.3f a2=%6.3f b1=%6.3f b2=%6.3f delay=%6.3f
E=%6.3f\n’,iter,Pb(1l),Pb(2),Pb(3),Pb(4),Pb(5),E);

while (1)
if (index_update==1)

al=Pb (1l); a2=Pb (2); bl=Pb(3); b2=Pb (4); delay=Pb(5);

E=object_PEMI (uu,yy,delt,tf,al,a2,bl,b2,delay); $object function

E_al=object_PEMI (uu,yy,delt, tf,al+delta,a2,bl,b2,delay);

E_a2=object_PEMIL (uu,yy,delt, tf,al,a2+delta,bl,b2,delay);

E_bl=object_PEMI1 (uu,yy,delt,tf,al,a2,bl+delta,b2,delay);

E_b2=object_PEMI (uu,yy,delt,tf,al,a2,bl,b2+delta,delay);

E_delay=object_PEMI (uu,yy,delt, tf,al,a2,bl,b2,delay+del_delay);

E_al_al=object_PEMI (uu,yy,delt, tf,al+2*delta,a2,bl,b2,delay);

E_a2_a2=object_PEMI (uu,yy,delt, tf,al,a2+2*delta,bl,b2,delay);
)
)

’

E_bl _bl=object_PEMI1 (uu,yy,delt, tf,al,a2,bl+2*delta,b2,delay

E_b2_b2=object_PEMI (uu,yy,delt, tf,al,a2,bl,b2+2*delta,delay);

E_delay_delay=object_PEMI (uu,yy,delt,tf,al,a2,bl,b2,delay+2*del_
delay) ;

E_al_a2=object_PEMI (uu,yy,delt, tf,al+delta,a2+delta,bl,b2,delay);

E_al_bl=object_PEMI1 (uu,yy,delt, tf,al+delta,a2,bl+delta,b2,delay);
E_al_b2=object_PEMIL (uu,yy,delt, tf,al+delta,a2,bl,b2+delta,delay);

(continued)

306 Process Identification and PID Control

Table 9.9 (Continued)

E_al_delay=object_PEMI (uu,vyy,delt, tf,al+delta,a2,bl,b2,delay
+del_delay);

E_a2_bl=object_PEMI (uu,yy,delt, tf,al,a2+delta,bl+delta,b2,delay);
E_a2_b2=object_PEMI (uu,yy,delt, tf,al,a2+delta,bl,b2+delta,delay);

E_a2_delay=object_PEMI (uu,yy,delt, tf,al,a2+delta,bl,b2,delay
+del_delay);

E_bl_b2=object_PEMI (uu,yy,delt, tf,al,a2,bl+delta,b2+delta,delay);

E_bl_delay=object_PEMI (uu,yy,delt, tf,al,a2,bl+delta,b2,delay

+del_delay);
E_b2_delay=object_PEMI (uu,yy,delt, tf,al,a2,bl,b2+delta,delay
+del_delay) ;

dv(l,1)=(E_al-E)/delta; $dv/dpl

dv(2,1)=(E_a2-E) /delta; $dv/dp2

dv (3,1)=(E_bl-E) /delta; $dVv/dp3

dv(4,1)=(E_b2-E)/delta; %$dVv/dp4

dv (5,1)=(E_delay-E) /del_delay; %$dV/dp5
ddv(1l,1)=(E_al_al-2*E_al+E)/delta”2; %$d"2V/dpl"2

ddv (2,2)=(E_a2_a2-2*E_a2+E) /delta”2;

ddv (3,3)=(E_bl_bl-2*E_bl+E)/delta”2;

ddv (4, 4)=(E_b2_b2-2*E_b2+E) /delta”2;

ddv (5,5)=(E_delay_delay-2*E_delay+E) /del_delay"2;
ddv(1l,2)=(E_al_a2-E_al-FE_a2+E) /delta”2; $d"2V/dpldp2
ddv(l,3)=(E_al_bl-E_al-E_bl+E)/delta”2;
ddv(l,4)=(E_al_b2-E_al-E_Db2+E) /delta”2;
ddv(1l,5)=(E_al_delay-E_al-E_delay+E)/ (delta*del_delay) ;
ddv(2,3)=(E_a2_bl-E_a2-E_bl+E) /delta”2;

ddv (2,4)=(E_a2_b2-E_a2-E_b2+E) /delta"2;

ddv (2,5)=(E_a2_delay-E_a2-E_delay+E)/ (delta*del_delay) ;
ddv (3,4)=(E_bl_b2-E_bl-E_b2+E) /delta"2;

ddv (3,5)=(E_bl_delay-E_bl-E_delay+E)/ (delta*del_delay) ;

ddv (4,5)=(E_b2_delay-E_b2-E_delay+E)/ (delta*del_delay) ;
ddv(2,1)=ddv(1l,2); ddv(3,1)=ddv (1,3); ddv(4,1)=ddv(1,4); ddv(5,1)
=ddv (1,5);
ddv (3,2)=ddv (2,3); ddv (4,2)=ddVv (2,4); ddV (5,2)=ddv (2,5) ;
ddv (4,3)=ddv (3,4); ddv (5,3)=ddv (3,5); ddv (5, 4)=ddVv (4,5) ;

end

P=Pb-inv (ddV+alpha*eye (5)) *dV;

Process Identification Methods for Continuous-Time Differential Equation Models 307

Table 9.9 (Continued)

if (P(5)<0.0) P(5)=0.0; end
if (P(5)>2.0) P(5)=2.0; end
al=P(1l); a2=P(2); bl=P(3); b2=P(4); delay=P (5);
[E_new yy_m]=object_PEMI (uu,yy,delt,tf,al,a2,bl,b2,delay);
if (E_new<E & P (5)>=0.0)
alpha=alpha/2.0; Pb=P;
iter=iter+1l; index_update=1;
fprintf (iteration=%2d al=%6.3f a2=%6.3f b1=%6.3f b2=%6.3f delay=%
6.3f E=%6.3f\n’ ,iter,P(1),P(2),P(3),P(4),P(5),E);
else
index_update=0;
alpha=alpha*1.5;
end
if (iter==20 | alpha>10.0710) break; end
end
figure (2) ; plot(tt,yy,’'c’,tt,yy_m,"k’); legend(’'process’, 'model’);

g_continuous_PEM1l.m

function [next_x,y]l=g_continuous_PEMI1 (x,delt,u,al,a2,bl,b2,delay);
subdelt=0.005; n=round (delt/subdelt) ;
A=[0-a2; 1-all; B=[b2; bl]; C=[01];
delay_k=round(delay/delt) ;
for i=1:n
dx=A*x+B*u (1000-delay_Kk) ;
x=x+dx*subdelt;
end
next_x=x; y=C*x;
return

object_PEMl.m

function [V yy_m] = object_PEMI (uu,vyy,delt,tf,al,a2,bl,b2,delay)
x=[0; 0]; y=0.0;
u_data=zeros (1,1001); n=round (tf/delt);
for i=1:n
t=i*delt; yy_m(i)=y; tt(i)=t;
for 3=1:1000
u_data(j)=u_data(j+1);
end
u_data (1001)=uu (i) ;
[x,y]=m_continuous_PEMIl (x,delt,u_data,al,a2,bl,b2,delay);
end
s=0;
for i=1l:length (yy)
s=s+ (yy (i) -yy_m(i))"2*delt;
end
V=s;

(continued)

308 Process Identification and PID Control

Table 9.9 (Continued)

m_continuous_PEM1.m

function [next_x,y]l=m_continuous_PEMI1 (x,delt,u,al,a2,bl,b2,delay);
subdelt=0.005; n=round (delt/subdelt) ;
A=[0-a2; 1-all; B=[b2; bl]; C=[01];
delay_k=round (delay/delt) ;
for i=1:n
dx=A*x+B*u (1000-delay_Kk) ;
x=x+dx*subdelt;
end
next_x=x; y=C*x;
return

>> continuous_PEMI1

iteration=0al=3.500a2=5.000bl= 0.000b2=1.500 delay=0.000E=3.936
iteration=1al=3.520a2=4.932pb1=-0.068Db2=1.646delay=0.119 E=3.936
iteration=2 al=3.554a2=4.777b1l=-0.178b2=1.930 delay=0.367 E=3.492
iteration=3al=3.609 a2=4.440b1=-0.272 b2=2.415delay=0.693 E=2.625
iteration=4 al=3.766 a2=3.854 b1=-0.247 b2=2.921 delay=0.825E=1.420
iteration=5al=4.085a2=3.271b1=-0.190b2=3.047 delay=0.816 E=0.532

Table 9.11 shows a typical convergence pattern of the prediction error identification method.
a is updated according to Marquardt’s compromise with the initial value of e = 1.0. For details,
refer to Chapter 2. Considering the confirmed robustness of the Levenberg—Marquardt method
and extensive simulation results for various initial settings, it is concluded that the nonlinear

Table 9.10 MATLAB code to draw Figure 9.10.

nyquist_continuous_PEMl.m

del_w=0.01; wmax=pi; n=round (wmax/del_w) ;
for i=1:n
w=(i-1)*del_w; j=complex(0,1); s=j*w;
gjw=exp (-0.5*s) / (s+1)"2;
gjw_model= (bl*s+b2) *exp (-delay*s) / (s"2+al*s+a2) ;
Re (i)=real (gjw); Im(i)=1imag(gjw) ;
Re_model (i) =real (gjw_model) ;
Im_model (i) =imag (gjw_model) ;
end
figure (1) ; plot (Re, Im,Re_model, Im_model,’ :");

command window

>>nyquist_continuous_PEM1

Process Identification Methods for Continuous-Time Differential Equation Models 309
Table 9.11 Typical convergence pattern for the prediction error identification method.

iteration= 0al=3.500a2=5.000bl= 0.000b2=1.500delay=0.000E=3.936
iteration= 1al=3.520a2=4.932Db1=-0.068b2=1.646delay=0.119 E=3.936
iteration= 2 al=3.554a2=4.777b1=-0.178 b2=1.930 delay=0.367 E= 3.492
iteration= 3al=3.609a2=4.440b1=-0.272Db2=2.415delay=0.693 E=2.625
iteration= 4 al=3.766 a2=3.854b1=-0.247 b2=2.921 delay=0.825E=1.420
iteration= 5al=4.085a2=3.271Db1=-0.190b2=3.047 delay=0.816 E=0.532
iteration= 6al=4.398 a2=2.924b1=-0.145Db2=2.845delay=0.775E=0.201
iteration= 7al=4.629a2=2.616b1=-0.119 b2=2.606 delay=0.734E=0.090
iteration= 8 al=4.733a2=2.415b1=-0.124b2=2.436delay=0.696E=0.037
iteration= 9al=4.714 a2=2.315b1=-0.157b2=2.346 delay=0.666E=0.025
iteration=10 al=4.568 a2=2.220b1=-0.206 b2=2.252 delay=0.643 E=0.025
iteration=11 al=4.233a2=2.058Db1=-0.175b2=2.086 delay=0.632 E=0.024
iteration=12 al=3.3804a2=1.648Db1=-0.114b2=1.666delay=0.592E=0.023
iteration=13al=2.181a2=1.067bl=-0.1490b2=1.070 delay=0.446E=0.019
iteration=14 al=1.860a2=0.934bl1=-0.129b2=0.931 delay=0.346E=0.015
iteration=15al=1.861a2=0.933b1=-0.130b2=0.930delay=0.343E=0.012
iteration=16al=1.861a2=0.933b1=-0.130b2=0.930delay=0.340E=0.012

optimization method gives acceptable robustness if the initial settings are roughly close to the

true values.

Example 9.6

Repeat Example 9.5 with a sampling time of 0.1.
Figures 9.15 and 9.16 show the activated process input and output and the identification
result. Figure 9.16 confirms that the prediction error method provides acceptable performance
under the circumstance of the measurement noises.
The MATLAB code to solve the estimation problem in Example 9.6 and draw Figure 9.16
are shown in Tables 9.12 and 9.13 respectively.

2.5

2+

1.5}

05}

W

Figure 9.15

t

10

15

Process input and output activated by a P controller with a sampling time of 0.1.

310 Process Identification and PID Control

process

m(Gliw))

Figure 9.16 Identification results of the prediction error identification method.

Table 9.12 MATLAB code to solve the estimation problem using the prediction error
method in Example 9.6.

continuous_PEM2.m

clear;
delt=0.1; sub_delt=0.02; tf=15; tref=-delt+sub_delt; ys=0.0;
n=round (tf/sub_delt) ;
al=2.0; a2=1.0; b1=0.0; b2=1.0; delay=0.5; S$process
C=[01]; x=[0; 0]; y=0.0; u_data=zeros(1,1001); u=0.0;
iter=0; rand(’seed’,0); noise=(rand(1l,n)-0.5)*0.1; k=1;
for i=1:n

t=i*sub_delt; yyy(i)=y+noise (i); ttt(i)=t; yys(i)=ys;

if (t>1) ys=1.0; end

if (abs (t-(tref+delt))<0.001) tref=t; u=2.5* (ys-yyy(i)); uu(k)=u;
yy (k) =yyy(i); tt(k)=t; k=k+1; end

for 3=1:1000

u_data(j)=u_data (j+1);

end

uuu (1)=u; u_data (1001)=u;

[x,vy]=g_continuous_PEM2 (x, sub_delt,u_data,al,a2,bl,b2,delay);
end
figure (1) ; plot (ttt,yyy,ttt,uuu); legend('y(t)’, u(t)’);
% starting PEM
al=3.5; a2=5.0; b1l=0.0; b2=1.5; delay=0.0; $initial values of model
delta=0.0001; del_delay=sub_delt; $interval for the numerical
derivatives

Process Identification Methods for Continuous-Time Differential Equation Models 311

Table 9.12 (Continued)

alpha=10.0; index_update=1;

Pb=[al a2 bl b2 delay]’;
E=object_PEM2 (uu, yy,sub_delt, tt,al,a2,bl,b2,delay);

fprintf ('iteration=%2d al=%6.3f a2=%6.3f b1=%6.3f b2=%6.3f delay=%6.3f
E=%6.3f\n’,iter,Pb(1l),Pb(2),Pb(3),Pb(4),Pb(5),E);

while (1)
if (index_update==1)

al=Pb(1l); a2=Pb (2); bl=Pb(3); b2=Pb (4); delay=Pb (5);

E=object_PEM2 (uu, yy,sub_delt, tt,al,a2,bl,b2,delay); $object
function

E_al=object_PEM2 (uu, yy,sub_delt, tt,al+delta,a2,bl,b2,delay

E_a2=object_PEM2 (uu,yy,sub_delt, tt,al,a2+delta,bl,b2,delay

E_bl=object_PEM2 (uu,yy,sub_delt, tt,al,a2,bl+delta,b2,delay

E_b2=object_PEM2 (uu, yy,sub_delt, tt,al,a2,bl,b2+delta,delay

E_delay=object_PEM2 (uu,yy,sub_delt, tt,al,a2,bl,b2,delay+
del_delay);

’

’

’

)
)
)
) .

’

’

E_al_al=object_PEM2 (uu,yy,sub_delt, tt,al+2*delta,a2,bl,b2,delay

E_a2_a2=object_PEM2 (uu,yy,sub_delt, tt,al,a2+2*delta,bl,b2,delay

E_bl_bl=object_PEM2 (uu,yy,sub_delt, tt,al,a2,bl+2*delta,b2,delay

E_b2_b2=object_PEM2 (uu,yy,sub_delt, tt,al,a2,bl,b2+2*delta,delay

E_delay_delay=object_PEM2 (uu,yy, sub_delt, tt,al,a2,bl,b2,delay+
2*del_delay);

’

’

)
)
)
) .

’

E_al_a2=object_PEM2 (uu,yy,sub_delt,tt,al+delta,a2+delta,bl,b2,
delay);

E_al_bl=object_PEM2 (uu,yy,sub_delt, tt,al+delta,a2,bl+delta,b2,
delay);

E_al _b2=object_PEM2 (uu,yy,sub_delt, tt,al+delta,a2,bl,b2+delta,
delay);

E_al_delay=object_PEM2 (uu,vyy,sub_delt, tt,al+delta,a2,bl,b2,delay+
del_delay);

E_a2_bl=object_PEM2 (uu,yy,sub_delt,tt,al,a2+delta,bl+delta,b2,
delay);

E_a2_b2=object_PEM2 (uu,yy,sub_delt, tt,al,a2+delta,bl,b2+delta,
delay);

E_a2_delay=object_PEM2 (uu,yy,sub_delt, tt,al,a2+delta,bl,b2,delay+
del_delay)

E_bl _b2=object_PEM2 (uu,yy,sub_delt, tt,al,a2,bl+delta,b2+delta,
delay) ;

E_bl_delay=object_PEM2 (uu,yy,sub_delt, tt,al,a2,bl+delta,b2,delay+
del_delay);

(continued)

312

Process Identification and PID Control

Table 9.12 (Continued)

E_b2_delay=object_PEM2 (uu,yy,sub_delt,tt,al,a2,bl,b2+delta,delay+

del_delay);

E_al-E

4

() /delta; %dv/dpl
(E_a2-E) /delta; $dv/dp2
(E_b1l-E) /delta; %$dV/dp3
(
(

’

(1,1)=
(2,1)
V(3,1)
(4,1)
(5,1)

E_b2-E) /delta; $dV/dp4

’

’

E_delay-E) /del_delay; %$dv/dp5

ddv(l,1)=(E_al_al-2*E_al+E)/delta”2; %$d"2V/dpl”2
ddv (2,2)=(E_a2_a2-2*E_a2+E) /delta”2;
ddV(3 3)=(E_bl_bl-2*E_Dbl+E) /delta”™2;
ddv (4,4)=(E_b2_b2-2*E_Db2+E) /delta”2;
ddv (5,5)=(E_delay_delay-2*E_delay+E) /del_delay"2;
ddv(1,2)=(E_al_a2-E_al-E_a2+E) /delta”2; $d"2V/dpldp2
ddv(l,3)=(E_al_bl-E_al-E_bl+E)/delta”2;
ddv(l,4)=(E_al_b2-E_al-E_Db2+E) /delta”2;
ddv (1,5)=(E_al_delay-E_al-E_delay+E)/ (delta*del_delay) ;
ddv(2,3)=(E_a2_bl-E_a2-E_bl+E) /delta”2;
ddv (2,4)=(E_a2_b2-E_a2-E_b2+E) /delta”2;
ddv (2,5)=(E_a2_delay-E_a2-E_delay+E)/ (delta*del_delay);
ddv (3,4)=(E_bl_b2-E_bl-E_b2+E) /delta”2;
ddv (3,5)=(E_bl_delay-E_bl-E_delay+E)/ (delta*del_delay);
ddv (4,5)=(E_b2_delay-E_b2-E_delay+E)/ (delta*del_delay);
ddv(2,1)=ddv(1,2); ddv (3,1)=ddv(1,3); ddv(4,1)=ddv(1,4); ddv(5,1)=
ddv(1,5);
ddv (3,2)=ddv (2,3); ddv (4,2)=ddv (2,4); ddV (5,2)=ddv (2,5) ;
ddv (4,3)=ddv (3,4); ddv (5,3)=ddv (3,5); ddv (5,4)=ddv (4,5);
end
P=Pb-inv (ddV+alpha*eye (5)) *dV;
if (P(5)<0.0) P(5)=0.0; end
if (P(5)>2.0) P(5)=2.0; end
al=P(1l); a2=P(2); bl=P(3); b2=P(4); delay=P (5);

[E_new yy_m]

if (E_new<E & P(5)>=0.0)
alpha=alpha/2.0; Pb=P;
iter=iter+l; index_update=1;
fprintf (/

delay=%6.3f E=%6.3f\n’,iter,P (1)

else
index_update=0;
alpha=alpha*1.5;

end

if (iter==20

/P(2),

| alpha>10.0710) break; end

=object_PEM2 (uu,yy,sub_delt, tt,al,a2,bl,b2,delay);

iteration=%2d al=%6.3f a2=%6. 3fb1=%6 3f b2=%6.3f
P(3),P

(P(5),E);

Process Identification Methods for Continuous-Time Differential Equation Models 313

Table 9.12 (Continued)

end
figure (2); plot(tt,yy,’'c’,tt,yy_m,’k”); legend(’'process’, 'model’);

g_continuous_PEM2.m

function [next_x,y]l=g_continuous_PEM2 (x,sub_delt,u,al,a2,bl,b2,
delay);
sub_subdelt=0.005; n=round (sub_delt/sub_subdelt) ;
A=[0-a2; 1-all; B=[b2; bl]; C=[01];
delay_k=round(delay/sub_delt) ;
for i=1:n
dx=A*x+B*u (1000-delay_Xk) ;
x=x+dx*sub_subdelt;
end
next_x=x; y=C*x;
return

object_PEM2.m

function [V yy_m]=object_PEM2 (uu,yy,sub_delt,tt,al,a2,bl,b2,delay)
x=[0; 0]; y=0.0; u_data=zeros(1,1001);
k=1; m=length (tt); tf=tt(m); n=round (tf/sub_delt)+1; s=0.0;
for i=1:n
t=i*sub_delt;
for j=1:1000
u_data (j)=u_data(j+1);
end
if (k<=m & abs (t-tt (k))<sub_delt/2.1)
if (k<m) s=s+(yy(k)-y)"2* (tt(k+1)-tt(k)); end
yy_m(k)=y; u=uu (k) ; k=k+1;
end
u_data (1001)=u;
[x,y]=m_continuous_PEM2 (x,sub_delt,u_data,al,a2,bl,b2,delay);
end
V=s;

m_continuous_PEM2.m

function [next_x,y]l=m_continuous_PEM2 (x,sub_delt,u,al,a2,bl,b2,
delay);
sub_subdelt=0.005; n=round (sub_delt/sub_subdelt) ;
A=[0-a2; 1-all; B=[b2; bl]; C=[01];
delay_k=round (delay/sub_delt) ;
for i=1:n
dx=A*x+B*u (1000-delay_Xk) ;
x=x+dx*sub_subdelt;
end
next_x=x; y=C*x;
return

(continued)

314 Process Identification and PID Control

Table 9.12 (Continued)

command window

>> continuous_PEM2

iteration= 0al=3.500a2=5.000bl= 0.000b2=1.500delay=0.000E=3.912
iteration= 1 al=3.521 a2=4.932b1=-0.067b2=1.644 delay=0.119E=3.912
iteration= 2 al=3.556a2=4.779b1=-0.177b2=1.926 delay=0.368E=3.473
iteration= 3 al=3.617 a2=4.443 b1=-0.280b2=2.400 delay=0.648 E=2.616
iteration= 4 al=3.775a2=3.855b1=-0.251b2=2.912 delay=0.847 E=1.467
iteration= 5al=4.104 a2=3.263b1=-0.193 b2=3.034 delay=0.804 E=0.546
iteration= 6 al=4.422 a2=2.901 bl=-0.167 b2=2.824 delay=0.751 E=0.209
iteration= 7 al=4.646 a2=2.602b1=-0.098 b2=2.591 delay=0.730E=0.093
iteration= 8 al=4.745a2=2.398b1=-0.110Db2=2.420delay=0.679E=0.041
iteration= 9 al=4.714a2=2.296b1=-0.164 b2=2.327 delay=0.648 E=0.029
iteration=10 al=4.557 a2=2.199b1=-0.197 b2=2.230 delay=0.630E=0.028
iteration=11al=4.164 a2=2.002 bl=-0.215b2=2.029 delay=0.597 E=0.028
iteration=12 al=3.096 a2=1.496 b1=-0.143 b2=1.509 delay=0.534 E=0.026
iteration=13al=2.218 a2=1.083b1l=-0.132b2=1.085delay=0.423 E=0.020
iteration=14 al=1.678 a2=0.840 bl1l=-0.156b2=0.834 delay=0.266E=0.015
iteration=15al=1.762 a2=0.897 b1=-0.041 b2=0.890 delay=0.413 E=0.013
iteration=16al=1.774 a2=0.893 bl=-0.145b2=0.888 delay=0.272 E=0.013

The simulations of Examples 9.5 and 9.6 exemplify that the prediction error identification
method shows good results for small and large sampling times. Also, it can incorporate an input
time delay efficiently. Previous continuous-time approaches using integral or delta transforms
cannot be applied to large sampling times because the numerical integration or the derivative of
the process output is not accurate for a large sampling time.

Table 9.13 MATLAB code to draw Figure 9.12.

nyquist_continuous_PEM2.m

del_w=0.01; wmax=pi; n=round (wmax/del_w) ;
for i=1:n
w=(i-1)*del_w; j=complex(0,1); s=J*w;
gjw=exp (-0.5*%*s) / (s+1) "2;
gjw_model= (bl*s+b2) *exp (-delay*s) / (s"2+al*s+a2) ;
Re (i)=real (gjw); Im(i)=imag(gjw);
Re_model (i) =real (gjw_model) ;
Im_model (i)=imag (gjw_model) ;
end
figure (1) ; plot (Re, Im,Re_model, Im_model,’:");

command window
>>nyquist_continuous_PEM2

Process Identification Methods for Continuous-Time Differential Equation Models 315

9.2.3 Concluding Remarks

A continuous-time prediction error identification method was introduced for continuous-time
processes with time delay. This has advantages compared with previous continuous-time and
discrete-time identification methods, since it can incorporate small, large and irregular sampling
times and input time delays as well. However, solving the nonlinear optimization problem using
the Levenberg—Marquardt method is a disadvantage compared with other process identification
methods using the least-squares method.

Problems

9.1 Activate the process using the following PI controller and estimate the model using the
identification method in Section 9.1 for the case of an initially steady state. Compare the
Nyquist plot of the model with that of the process.

&y(1) | A L)
ds ds? dt

ult) = 1504() ~3(0) + 35 | 0:0) - 3(e) ¢

du(t—0.1)
dr

+y(1) = —0.1 +u(t—0.1)

&y (1)
ds?

_dy(r)

— At

=y(0)=0, u(t)=0 fort<0
=0

yo=10 fort>0 and y;=0.0for<0

9.2 Tune the PID controller using the ITAE-2 tuning rule for the model obtained in Problem
9.1 and simulate the control performance.

9.3 Determine if you can apply the identification method in Section 9.1 for the case of an
initially unsteady state. Justify your conclusion.

9.4 Activate the process using the following PID controller and estimate the model using the
identification method in Section 9.1 for the case of an initially unsteady state. Compare
the Nyquist plot of the model with that of the process.

3 2 u(t—0.
ddytg[) +3ddylgl‘) +3d)(71(tt) +y(t) _ _O.IW —|—u(l—0.1)
ult) = 1504(0) = 5(0) + 33 [0ute) = 5(2)) ae-+05 L) 5
d? d
%(zt) t=0 N 07 % t=0 - 057 y(O) o 03’ u(l) B O, =

yvo=1.0 fort>5 and y;=0.0 forz<0

9.5 Tune the PID controller using the ITAE-2 tuning rule for the model obtained in
Problem 9.4 and simulate the control performance.

316

Process Identification and PID Control

9.6

9.7

9.8

9.9

9.10

9.11

Activate the virtual process of Process 3 (refer to the Appendix for details) using a biased-
relay and obtain the model using the two identification methods in Section 9.1.

Tune the PID controller using the ITAE-2 tuning rule for the model obtained in Problem
9.6 and show the control performance for the virtual process.

Estimate the model using the prediction error identification method in Section 9.2 for the
activated process output and input data of Problem 9.1. Compare the Nyquist plot of the
model and that of the process.

Activate the process of Problem 9.1 with a sampling time of 0.2 and estimate the model
using the prediction error identification method in Section 9.2 for the activated process
output and input data. Compare the Nyquist plot of the model and that of the process.
Activate the virtual process of Process 3 (refer to the Appendix for details) using a biased-
relay and obtain the model using the prediction error identification method in Section 9.2.
In the case, determine the initial estimates using the Fourier transform or the modified
Fourier transform.

Tune the PID controller using the ITAE-2 tuning rule for the model obtained in Problem
9.10 and show the control performance for the virtual process.

References

Sung, S.W,, Lee, I. and Lee, J. (1998) New process identification method for automatic design of PID controllers.
Automatica, 34, 513.

Sung, S.W. and Lee, 1. (1999) On-line process identification and PID controller autotuning. Korean Journal of
Chemical Engineering, 16, 45.

Sung, S.W. and Lee, I. (2001) Prediction error identification method for continuous-time processes with time delay.
Industrial & Engineering Chemistry Research, 40, 5743.

Sung, S.W., Lee, S.Y., Kwak, H.J. and Lee, I. (2001) Continuous-time subspace system identification method.
Industrial & Engineering Chemistry Research, 40, 2886-2896.

10

Process Identification Methods
for Discrete-Time Difference
Equation Models

10.1 Prediction Models: Autoregressive Exogenous Input Model and
Output Error Model

Prediction models are used to predict the future process output on the basis of the past process
input and/or past process output. In this section, two types of discrete-time prediction model are
introduced. One is the ARX model and the other is the output error (OE) model. Various discrete-
time difference models have been used for modeling of a process. The most useful in process
systems engineering are the ARX model and the OE model. Other discrete-time difference
models, such as the autoregressive, moving-average, exogenous input (ARMAX) model and the
autoregressive, integrated-moving-average, exogenous input (ARIMAX) model, are useful for
noisy environments. All the models for noisy processes assume that the noise is white noise. But
noise in process systems engineering is small and uncertainties such as disturbances and noises are
also quite different from white noise. Also, the models for noisy environments have complicated
structures compared with an ARX or OE model. So, the ARX model and OE model are more
useful for most cases in process systems engineering than the other more complicated models.

10.1.1 Autoregressive Exogenous Input Model

The ARX model has the following model structure:

(kAT = —any((k — DA) = asy(k = 2)A1) = -+ = ayy((k — m)AY)

(k=1 —)AL + bo((k—2— DA + -+ +byu((e—n—ad)an+8 10D

where At is the sampling time. d is the number of the sampling time corresponding to the time
delay. That s, dAtis the time delay. n is the model order. y(kA?) and u(kAt) are the measurements
of the process output and the process input at the kth sampling. The model output y(kA?) is the
predicted process output at the kth sampling. The coefficients of d,a i=1,2,... ,n) and

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

318 Process Identification and PID Control

Z;i (i=1,2,...,n) are the model parameters of the ARX model. As shown in (10.1), $(kAz)
depends on the past process output y((k — 1)A?), y((k — 2)A?), ..., y((k — n)At)) and the past
process input u((k — 1 — d)At), u((k —2 — d)At), . . .,u((k — n — d)Ar). It should be noted that
aone-step-before process output y((k — 1)Ar) is needed to estimate the model output y(kAt).That
is, the ARX model can only predict a one-step-ahead process output. So, it can be said that the
ARX model is a one-step-ahead predictor.

10.1.2 Output Error Model

The OE model has the following structure:

Y(kA) = —ary((k — 1)A1) —a3((k —2)A1) — -+ — a9((k —n)Ar) (10.2)
u

+byu((k —1 = d)At) + byu((k —2 — d)A) + - - -_+ }ﬁn (k—n—d)Af)+B

where At is the sampling time. d is the number of the sampling time corresponding to the time
delay. That is, dAt is the time delay. n is the model order. u(kAt?) is the measurement of the
process input at the kth sampling. The model output of y(kAt) is the predicted process output at
the kth sampling. The coefficients of d,a; (i = 1,2,...,n)and b; (i = 1,2, ..., n) are the model
parameters of the OE model. As shown in (10.2), $(kAt) depends on the past model output

y((k—1)A1), y((k—2)At), ..., y((k —n)At) and the past process input u((k — 1 —d)At),

u((k —2—d)Ar), ..., u((k —n—d)Ar). It should be noted that all the model output in the
future can be estimated only if the process input is known. So, it can be said that the OE model is
a multistep-ahead predictor.

Example 10.1
Consider the following ARX and OE models:

ARX model : y(kAt) = 0.5y((k — 1)At) + u((k —2)Ar) +0.2 (10.3)
OE model : 3(kAt) = 0.59((k — 1)At) + u((k —2)At) + 0.2 (10.4)

Table 10.1 shows the predicted process outputs (model output) for the given process input
and the process output. Table 10.2 is the MATLAB code for Table 10.1. The initial values of the

Table 10.1 Prediction results of an ARX model and an OE model.

Sampling k& Process input u(kAf) Process output y(kA7) Prediction (model output, y(kAt))

ARX OE
1 0 0.2300 Not available 0.2300 (initial value)
2 0 0.1600 Not available 0.1600 (initial value)
3 2 0.3000 0.2800 0.2800
4 2 0.3800 0.3500 0.3400
5 2 2.2500 2.3900 2.3700
6 0 3.0500 3.3250 3.3850
7 0 4.2000 3.7250 3.8925
8 1 2.0000 2.3000 2.1463
9 1 1.5700 1.2000 1.2731
10 1 1.6500 1.9850 1.8366

Process Identification Methods for Discrete-Time Difference Equation Models 319

Table 10.2 MATLAB code to simulate Table 10.1.

arx_oe_prediction.m Command window

clear; >> arx_oe_prediction
y=[0.230.160.300.382.253.054.20 y_arx =
2.001.571.65]; 0.2300 0.1600 0.2800
u=[(002220011171; 0.3500 2.3900 3.3250
y_arx(l)=y(l); y_arx(2)=y(2); Sdummy 3.7250 2.3000 1.2000
setting 1.9850
for i=3:10

y_arx (1)=0.5*y (i-1)+u(i-2)+0.2; y_oe =
end 0.2300 0.1600 0.2800
y_oe(l)=y(l); y_oe(2)=y(2); $initial 0.3400 2.3700 3.3850
values 3.8925 2.1463 1.2731
for 1=3:10 1.8366

y_oe(i1)=0.5*y_oe(i-1)+u(i-2)

+0.2;
end
y_arx
y_oe
plot(1:10,y_arx,1:10,y_oe,1:10,v);
legend ('ARX’,’OE’,’ Process Output’);

OE model are chosen as the process outputs. It should be noted that the ARX model can predict
only as much as one sampling time because it requires the process output before one sampling
time. Meanwhile, the OE model can predict without limit only if the process input is given
because it uses the model output. So, the ARX model is a one-step-ahead predictor and the OE
model is a multistep-ahead predictor.

10.2 Prediction Error Identification Method for the Autoregressive
Exogenous Input Model

The prediction error identification method to identify the ARX model estimates the
model parameters by minimizing the prediction error of the ARX model (Ljung, 1987).
It solves the following optimization problem to obtain the model parameters from the
discrete-sampled-data y(iAr), i =d +n+1,--- N, and known u(?). The objective function
of (10.5) is the norm of the one-step-ahead prediction error.

. R . 1 N
min - . _ Z AN a2
Ellf"ﬁnj?lw',én,fnlﬁ V(ab o aambb e ;bmdaB) - N—El—n ; 1(y<lAZ) y(lAt>>
i=d+n+

subject to

ARX model (10.1) (10.5)

320 Process Identification and PID Control

where y(iA7) and y(iAt) denote the process output and the model output respectively. It should
be noted that, if is given, the model parameters &y , - - - , dy, by, - - - , by, B can be estimated using
the least-squares method. If disnot given, then the model parameters a, - - - , a,, Bl R Z)n, d , B
should be estimated by solving the nonlinear optimization problem (10.5).

10.2.1 Case 1: Time Delay is Known

Assume that the time delay of dAt is known. Then, the optimization problem (10.5) becomes
the following form:

i . - 5 1 N . a N2
alanll,llan V(ay, -, an, by, ,by,B) = N n Z (v(iAr) — 3(iAr))
i=d+n+1
subject to
ARX model (10.1) (10.6)

Note that all the measurements of the right-hand side of (10.1) are available and (10.1)
is a linear form with respect to the model parameters. So, the optimization problem (10.6)
can be solved in a straightforward manner by applying the least-squares method to (10.1).
For a detailed description of the least-squares method, refer to Chapter 2. The solution
of (10.6) is

=0 @] @Y (10.7)
wherep=[a, --- a, b, --- b, B] arethe model parameters, and the matrices are
as follows:
ere = —y((k=1DA1), -, @i = —y((k—n)Ar) (108)
Pn+1hk = u((kf d— 1>AI)7 Pk = u((kf d*l’l)Af), Popnt+ 1k = 1

Yad+n Prd+n Prasn 7 Poag1den
y[n g01.21 n+1 QDZ,EJ n+1 e <'02n l,c}’ n+1
Y — i+.+1 C o- + + + + + '+ + (10.9)
N PIN PN Pon+ 1N

y

Y, ® and p are an (N—n + 1) x 1 vector, (N—n + 1) x (2n 4+ 1) matrix and 2n + 1) x 1
vector respectively.

10.2.2 Case 2: Time Delay is Unknown

Assume that the time delay of dAt is unknown. Then, the optimization problem (10.5) should
be solved. The optimization problem (10.5) can be rewritten (10.10) using the optimal solution
of Case 1:

Process Identification Methods for Discrete-Time Difference Equation Models 321

. . 1 N
M y(d) =——— > (y(iAr) —3(iAr))? subject to
d N—d—n_.
i=d+n+1
(10.7) and ARX model (10.1) (10.10)

To solve the optimization problem, the interval-halving method can be used because (10.10)
is aone-dimensional nonlinear optimization problem. In this case, it should be noted that disan
integer. So, the real number chosen by the interval-halving algorithm should be converted to the
closest integer number for every iteration and the termination condition should be changed. For
the detailed code to reflect this, refer to the Example 10.2.

Example 10.2
The following continuous-time process with time delay is simulated to confirm the identifica-
tion performance of the prediction error identification method for the discrete-time difference
equation model of the ARX model:

dy(1)

dzyt(zt) #2288 50 = (e~ 03) (10.11)

The process is activated by the P controller, for which the setpoint is changed from 0 to 1 at
t=1and from 1 to 0 at #="7. The sampling time is 0.1. Figure 10.1 shows the activated process
input and output.

t

Figure 10.1 Activated process input and output by a P controller.

10.2.1 Autoregressive Exogenous Input Model for the Case that the Time

Delay is Known

The time delay of the process is 0.5 as shown in (10.11). So, the number of the sampling
time corresponding to the time delay is 5. And, the order of the process is 2 and it is

322 Process Identification and PID Control

assumed that the bias term of B = 0 is known. Then, the discrete-time ARX model should
be chosen as (10.12).

$(kAt) = — ayy((k — 1)A1) — apy((k — 2)At) + byu((k — 6)At) + byu((k —7)Ar) (10.12)

The model parameters of the ARX model obtained by the prediction error identification
method of (10.7) are &, = — 1.8107394, a, = 0.8197907, b, = 0.0028756, b, = 0.0061637.
The MATLAB code is shown in Table 10.3.

Table 10.3 MATLAB code to estimate the ARX model using the least-squares method.

PEM_arxl.m
clear; delt=0.1; sub_delt=0.02; tf=15; tref=-delt+sub_delt; ys=0.0;
n=round (tf/sub_delt) ;
al=2.0; a2=1.0; b1l=0.0; b2=1.0; delay=0.5; $process
=[01]; x=[0; 0]; yv=0.0; u_data=zeros(1,1001); u=0.0;
k=0; rand(’seed’,0); noise=(rand(1,n)-0.5)*0.0;
for i=1:n
t=i*sub_delt; tt(i)=t; ym=y+noise (i); yy(i)=ym; yys(i)=ys;
if (t>1) ys=1.0; end
if (£>7) ys=0.0; end
if (abs(t-(tref+delt))<0.001)
k=k+1;
tref=t; u=2.5* (ys-ym); pem_t_data (k)=t; pem_u_data (k)=u;
pem_y_data (k) =ym;
end
for j=1:1000 u_data(j)=u_data (j+1); end
u_data (1001)=u; uu(i)=u;
[x,y]=g_discrete_arxl_PEM(x,sub_delt,u_data,al,a2,bl,b2,delay);
end
figure (1) ; plot(tt,yy,tt,uu); legend("y(t)’," u(t)’);
% PEM for the ARX model
m=length (pem_u_data);
for k=1:m-7
Y (k,1)=pem_y_data (k+7);
phi_1(k,1)=-pem_y_data (k+6) ;
phi_2(k,1)=-pem_y_data (k+5);
phi_3(k,1)=pem_u_data (k+1);
phi_4 (k,1)=pem_u_data (k) ;
end
PHI=[phi_1 phi_2 phi_3 phi_4];
P=inv (PHI’ *PHI) *PHI’ *Y;
yy_m=PHI*P;
fprintf (‘al=%8.7f a2=%8.7f b1=%8.7f b2=%8.7f \n’ ,P(1),P(2),P(3),P(4));
figure (2); plot(tt,yy,’'c’,pem_t_data(8:m),yy_m,’ k");
legend (' process’,'model’) ;

g_discrete_arxl_PEM.m
function
[next_x,y]=g_discrete_arxl_PEM(x,sub_delt,u,al,a2,bl,b2,delay):;
sub_subdelt=0.005; n=round (sub_delt/sub_subdelt) ;

Process Identification Methods for Discrete-Time Difference Equation Models 323

Table 10.3 (Continued)

A=[0 -a2; 1 -al]l; B=[b2; bl]; C=[01];

delay_k=round(delay/sub_delt) ;

for i=1:n
dx=A*x+B*u (1000-delay_Xk) ;
x=x+dx*sub_subdelt;

end

next_x=x; y=C*x;

return

Command Window
>> PEM_arxl
al=-1.8107394 a2=0.8197907 b1=0.0028756 b2=0.0061637

Example 10.2.1 Autoregressive Exogenous Input Model for the Case that the Time
Delay is Unknown

It is assumed that the bias term B = 0 is known and the time delay of the process is unknown.
Then, the discrete-time ARX model should be chosen as

S(kAt) = — ayy((k — 1)AL) — any((k — 2)At) + byu((k — 1 — d)At) + bou((k — 2 — d)Ar)
(10.13)

The model parameters of the ARX model obtained by the prediction error identification
method (10.10) are a = —1.8107394, a4, =0.8197907, b, =0.0028756,
b, =0.006 1637 and d = 5. The initial interval for the interval-halving method is chosen
as Elmin =0 apd Eimax = 10. The MATLAB code is shown in Table 10.4. It should be noted that
the variable d is an integer. So, the code rounds off the real number chosen by the interval-
halving algorithm to the closest integer number and it terminates when the interval is 1.

Table 10.4 MATLAB code to estimate the ARX model using the interval-halving method
and the least-squares method.

PEM_arx2.m
clear;
delt=0.1; sub_delt=0.02; tf=15; tref=-delt+sub_delt; ys=0.0;
n=round (tf/sub_delt) ;
al=2.0; a2=1.0; b1=0.0; b2=1.0; delay=0.5; S$process
C=[01]; x=[0; 0]; yv=0.0; u_data=zeros(1,1001); u=0.0;
k=0; rand(’seed’,0); noise=(rand(1l,n)-0.5)*0.0;
for i=1:n
t=i*sub_delt; tt(i)=t; ym=y+noise(i); yy(i)=ym; yys(i)=ys;
if (t>1) ys=1.0; end
if (£>7) ys=0.0; end
if (abs(t-(tref+delt))<0.001)
k=k+1;
tref=t; u=2.5*% (ys-ym); pem_t_data (k)=t; pem_u_data (k)=u;
pem_y_data (k) =ym;
(continued)

324 Process Identification and PID Control

Table 10.4 (Continued)

end
for j=1:1000
u_data(j)=u_data(j+1);
end
u_data (1001)=u; uu(i)=u;
[x,v]=g_discrete_arx2_PEM(x,sub_delt,u_data,al,a2,bl,b2,delay);
end
figure (1) ; plot(tt,yy,tt,uu); legend('y(t)’,"u(t)’);
PEM for the ARX model
interval-halving method
dmax=10; dmin=0; iter=0;
while (1)
iter=iter+1;
interval=(dmax-dmin) /4;
dl=round (dmin+interval) ;
d2=round (dmin+2*interval) ;
d3=round (dmin+3*interval) ;
[fl,P]l=error_arx2_PEM(pem_u_data,pem_y_data,dl);
[f2,P]=error_arx2_PEM(pem_u_data,pem_y_data,d2);
[f3, Pl=error_arx2_PEM(pem_u_data,pem_y_data,d3);
f((f1<f2) & (£2<=£3)) dmax=d2; end
f((f1>=£f2) & (£2>f3)) dmin=d2; end
f((f1>=£f2) & (£2<=£f3)) dmin=dl; dmax=d3; end
f (abs (dmax-dmin)==1)
[fl,Pmin]=error_arx2_PEM (pem_u_data,pem_y_data,dmin) ;
[£2, Pmax]=error_arx2_PEM(pem_u_data,pem_y_data,dmax) ;
f (f2<=fl) d=dmax; P=Pmax; else d=dmin; P=Pmin; end
break;
end
fprintf ('iter=%2d £1=%8.4e £2=%8.4e £3=%8.4e d1=%2d d2=%2d d3=%2d
\n’,iter,fl,£f2,£3,d1,d2,d3);
end
fprintf ('al=%8.7f a2=%8.7f b1l=%8.7f b2=%8.7f d=%3d
\n’,P(1),P(2),P(3),P(4),d);

error_arx2_PEM.m
function [error,Pl=error_arx2_PEM (pem_u_data,pem_y_data,d);
m=length (pem_u_data);
for k=1:m-2-d
Y (k,1)=pem_y_data (k+d+2) ;

phi_1(k,1)=-pem_y_data (k+d+1);
phi_2(k,1)=-pem_y_data (k+d) ;
phi_3(k,1)=pem_u_data (k+1);
phi_4 (k,1)=pem_u_data (k) ;

end

PHI=[phi_1 phi_2 phi_3 phi_4];
P=inv (PHI’ *PHI) *PHI’ *Y;
yy_m=PHI*P;

Process Identification Methods for Discrete-Time Difference Equation Models 325

Table 10.4 (Continued)

error=(pem_y_data (d+3:m)-yy_m’) * (pem_y_data (d+3:m)-yy_m’)’/
(m-d-2) ;
return

g_discrete_arx2_PEM.m
function
[next_x,yl=g_discrete_arx2_PEM(x,sub_delt,u,al,a2,bl,b2,delay);
sub_subdelt=0.005; n=round (sub_delt/sub_subdelt) ;
A=[0-a2; 1 -all; B=[b2; bl]; C=[01];
delay_k=round(delay/sub_delt) ;
for i=1:n
dx=A*x+B*u (1000-delay_Xk);
x=x+dx*sub_subdelt;
end
next_x=x; y=C*x;
return

Command Window
>> PEM_arx2
iter=1 f1=6.1500e-006 £2=2.5526e-009 £3=1.7149e-005 dl= 3 d2=5d3=38
iter=2 £f1=2.4156e-006 £2=7.2092e-007 £3=7.9410e-006 d1= 4 d2= 6 d3=7
iter=3 f1=2.5526e-009 £2=7.2092e-007 £3=7.2092e-007 d1=5d2=6d3=6
al=-1.8107394 a2=0.8197907 b1=0.0028756 b2=0.0061637 d=5

10.3 Prediction Error Identification Method for the Output Error Model

The prediction error identification method to identify the OE model estimates the model
parameters by minimizing the prediction error of the OE model (Ljung, 1987). It solves the
following optimization problem to obtain the model parameters from the discrete-sampled-
datay(iA?),i=d + n + 1,...,N and known u(¢). The objective function of (10.14) is the norm
of the multistep-ahead prediction error:

, L 1 3 AN e

g1 e ”n};ln[; d.B V(ala”'aanabla"'7bl17dﬂB) = iy Z (y(lAt)iy(lAt))z

Ay ylp,01 4 ,0p,d, N_d_ni:gi+n+l

subject to

OE model (10.2) (10.14)

where y(iAr) and y(iAt) denote the process output and the model output respectively.

10.3.1 Case 1: Time Delay is Known

Assume that the time delay dAt is known. Then, the optimization problem (10.14) becomes the
following form:

326 Process Identification and PID Control

: X . I 0.5 N _ NG
i | V(@1 @b b B) = = S (v(iAd) = 3(iA0)
i=d+n+1
subject to
OE model 10.2 (10.15)

To solve this optimization problem, the following Levenberg—Marquardt method is used,
which repeats (10.16) until the parameters converge within tolerance:

) =pli—1)— %Jral] {%{1))} (10.16)

p=1lay @ - ay by by - b, d B (10.17)

where j denotes the iteration number and « is a small positive value that can be updated
every iteration to compromise between the robustness and the convergence rate. For details,
refer to Chapter 2. The initial values in (10.16) are recommended to be chosen as the model
parameters obtained by the prediction error identification methods for the ARX model of
Section 10.2.

The partial derivatives of the objective function with respect to the adjustable parameters
in (10.16) can be calculated by using the numerical derivative or solving the difference
equations. Refer to Chapter 2 for the numerical derivative. Refer to the following to understand
how to calculate the partial derivatives by solving the difference equations.

From (10.15), (10.18) is derived:

V(M) L NN ian - oiagy SUAD

B N_;z_ni_g;](y(m) 3(i80) (10.18)
op(n) _[a3(0) @ () w@ 0]
aﬁ_{aal 3, b, oh 0B (10.19)

From (10.2), the partial derivatives (10.20)—(10.24) are obtained for a;, s, 1;1, 132 and B.
Also, the other partial derivatives can be derived in a similar way. Then, the partial derivatives
in (10.18) can be calculated by solving the difference equations.

ayé/fm) e nan—a ay((kaj DIV ay((kaT 20 65)((](6; n)A)
ap ay a ap

(10.20)

M(ka) . C9((k—1)An) . 39((k—2)Ar) O9((k —m)Ad)

v, ~ Wk=2A)—a e — e e e e

(10.21)

Process Identification Methods for Discrete-Time Difference Equation Models 327

oy(kar) . O((k—DAn) . B((k-2)A) M+u((k_1_gg)A,)
0b, : ab, : 0by ' ob,

(10.22)

oy(kar) _ . S((k=DA) - d((k=2)A) MH((k_z_&)A[)
ob, 1 3b, ’ 0b, ’ o,

(10.23)

(kA O((k—DA) , ((k=2)A) -, B(k—mA) gy

oB 0B 0B " 0B '

The initial values of all the partial derivatives are zero because the parameter of p does not affect
the initial values of the partial derivatives.
The second derivative of (10.16) is

Fvp) 1 N o O
5 No gi_ni_g;ﬂ(y(mt) y(iAr)) &
1 N oy(iar)] [op(ian] "
+N—3—nia§+l[e (1023

When the solution is close to actuality, the first term of the right-hand side in (10.25) can be
neglected:

2 N N afe N T
0 V(Zp) oL > [%} [%} (10.26)
9 Nfd*ni:c}'+n+1 P P

In summary, all the partial derivatives in (10.18) and (10.26) are calculated for a given
p(j—1) by selecting them at every sampling while continuously solving the difference
equations such as (10.2) and (10.20)—(10.24) simultaneously. Next, it is straightforward to
calculate the updated parameters p(;j) from (10.16). Repeat this procedure until the parameters
converge.

10.3.2 Case 2: Time Delay is Unknown

Assume that the time delay dAt is unknown. Then, the optimization problem (10.14) should be
solved. The optimization problem (10.14) can be rewritten (10.27) using the optimal solution
of Case 1:

. R 1 N
miny(d) = ——— Z (y(iAr) —$(iAt))*| subject to solutions of (10.15)
¢ N—d—n_iT.,

(10.27)

328 Process Identification and PID Control

To solve the optimization problem, the interval-halving method can be used because (10.27)
is a one-dimensional nonlinear optimization problem. In this case, it should be noted that d is an
integer. So, the real number chosen by the interval-halving algorithm should be converted to the
closest integer number for every iteration and the termination condition should be changed. For
the detailed code to reflect this, refer to the Example 10.3.

Example 10.3
Estimate the OE model for the activated process input and the process output in
Example 10.2.

Solution Two cases are considered. The first case assumes that the time delay is known. The
second case assumes that the time delay is unknown.

Example 10.3.1 Output Error Model for the Case that the

Time Delay is Known

Itis assumed that the time delay of the process is 0.5, as shown in (10.11). So, the number of the
sampling time corresponding to the time delay is 5. Also, the order of the process is 2 and it is
assumed that the bias term B = 0 is known. Then, the discrete-time OE model should be
chosen as

J(kAr) = —ar3((k — 1)AL) — a3 ((k — 2)At) + byu((k — 6)Ar) + bau((k — 7)Ar) (10.28)

The model parameters of the OE model obtained by the prediction error identification
method of (10.15) are a; = — 1.8142, a, = 0.823 05, bl = 0.004 443 and bz =0.0044251.
The initial Values for the Levenberg—Marquardt method are chosen as @; = — 1.5, @ = 0.60,
b1 = 0.002 and bz = 0.003. The MATLAB code is shown in Table 10.5.

Example 10.3.2 Output Error Model for the Case that the

Time Delay is Unknown

It is assumed that the time delay of the process is unknown and the bias term B = 0 is known.
Then, the discrete-time OE model should be chosen as

$(kAt) = —a3((k — 1)A1) — a9 ((k — 2)A1) + byu((k — 1 — d)Ar) + bou((k — 2 — d)A?)
(10.29)

The model parameters of the OE model obtained by the prediction error identification
method of (10.27) are a; = — 1.8142, a, = 0.823 05, by = 0.004 443 b, = 0.004 425 1 and
d = 5. The initial values for the Levenberg-Marquardt method are chosen as a; = — 1.5,
a, = 0.60, by = 0.002 and b, = 0.003. And the initial interval for the interval-halving

Process Identification Methods for Discrete-Time Difference Equation Models 329

Table 10.5 MATLAB code to estimate the OE model using the Levenberg—Marquardt method.

PEM_ocel.m

clear;
delt=0.1; sub_delt=0.01; tf=15; tref=-delt+sub_delt; ys=0.0;
n=round (tf/sub_delt) ;
al=2.0; a2=1.0; b1=0.0; b2=1.0; delay=0.5; $process
C=[01]; x=[0; 0]; y=0.0; u_data=zeros(1,1001); u=0.0;
k=0; rand(’seed’,0); noise=(rand(1l,n)-0.5)*0.0;
for i=1:n

t=i*sub_delt; tt(i)=t; ym=y+noise (i); yy(i)=ym; yys (i)=ys;

if (t>1) ys=1.0; end

if (t>7) ys=0.0; end

if (abs(t-(tref+delt))<0.001)

k=k+1;

tref=t; u=2.5* (ys-ym) ; pem_t_data (k)=t; pem_u_data (k)=u;
pem_y_data (k) =ym;

end

for j=1:1000

u_data(j)=u_data(j+1);
end
u_data (1001)=u; uu(i)=u;
[x,y]=g_discrete_oel_ PEM(x,sub_delt,u_data,al,a2,bl,b2,delay);

end
figure (1) ; plot(tt,yy,tt,uu); legend('y(t)’,"u(t)’);
% PEM for the OE model
al=-1.5; a2=0.6; b1=0.002; b2=0.003; $initial values for the LV method
[P,E]=1v_oel (pem_u_data,pem_y_data,al,a2,bl,b2,5);
fprintf ('al=%8.4e a2=%8.4e b1=%8.4e b2=%8.4e d=%2d E=%8.4e
\n’,P(1),P(2),P(3),P(4),5,E);

lv_oel.m
function [P,E_new]=1lv_oel (pem_u_data,pem_y_data,al,a2,bl,b2,d)
delta=0.00001; %$interval for the numerical derivatives
alpha=1.0; index_update=1; iter=0;
Pb=[al a2 bl b2]’;
E=object_PEM_oel (pem_u_data,pem_y_data,al,a2,bl,b2,d);
Sfprintf ('iter=%2d al=%8.4e a2=%8.4e bl=%8.4e b2=%8.4e d=%2d
E=%8.4e\n’,iter,Pb(1l),Pb(2),Pb(3),Pb(4),d,E);
while (1)
if (index_update==1)
al=Pb (1) ; a2=Pb (2); b1l=Pb(3); b2=Pb (4) ;
E=object_PEM_oel (pem_u_data,pem_y_data,al,a2,bl,b2,d); %object
function
E_al=object_PEM_oel (pem_u_data,pem_y_data,al+delta,a2,bl,b2,d);
E_a2=object_PEM_ocel (pem_u_data,pem_y_data,al,a2+delta,bl,b2,d);
E_bl=object_PEM_oel (pem_u_data,pem_y_data,al,a2,bl+delta,b2,d)
E_b2=object_PEM_ocel (pem_u_data,pem_y_data,al,a2,bl,b2+delta,d);
)
)
)

’

’

E_al_al=object_PEM_oel (pem_u_data,pem_y_data,al+2*delta,a2,bl,b2,d
E_a2_a2=object_PEM_ oel (pem_u_data,pem_y_data,al,a2+2*delta,bl,b2,d
E_bl_bl=object_PEM_oel (pem_u_data,pem_y_data,al,a2,bl+2*delta,b2,d

’

’

(continued)

330 Process Identification and PID Control

Table 10.5 (Continued)

E_b2_b2=object_PEM_oel (pem_u_data,pem_y_data,al,a2,bl,b2+2*delta,d);
E_al_a2=object_PEM_oel (pem_u_data,pem_y_data,al+delta,
a2+delta,bl,b2,d);

E_al_bl=object_PEM_oel (pem_u_data,pem_y_data,al+delta,az,
bl+delta,b2,d);
E_al_b2=object_PEM oel (pem_u_data,pem_y_data,al+delta,az2,bl,
b2+delta,d);

E_a2_bl=object_PEM_oel (pem_u_data,pem_y_data,al,a2+delta,
bl+delta,b2,d);

E_a2_b2=object_PEM_oel (pem_u_data,pem_y_data,al,a2+delta,bl,
b2+delta,d);
E_bl_b2=object_PEM oel (pem_u_data,pem_y_data,al,a2,bl+delta,
b2+delta,d);

dv(l,1)=(E_al-E)/delta; %$dv/dpl

dv(2,1)=(E_a2-E) /delta; $dVv/dp2
dv(3,1)=(E_bl-E)/delta; $dV/dp3
dv(4,1)=(E_b2-E)/delta; %$dv/dp4
ddv(l,1)=(E_al_al-2*E_al+E)/delta”2; $d"2V/dpl”2
ddv (2,2)=(E_a2_a2-2*E_a2+E) /delta”2;

ddv (3,3)=(E_bl_bl-2*E_bl+E) /delta”2;

ddv (4,4)=(E_b2_b2-2*E_Db2+E) /delta”2;
ddv(1l,2)=(E_al_a2-E_al-E_a2+E) /delta”2; $d"2V/dpldp2
ddv (1,3)=(E_al_bl-E_al-E_bl+E)/delta"2;
ddv(l,4)=(E_al_b2-E_al-E_b2+E) /delta”2;

ddv (2,3)=(E_a2_bl-E_a2-E_bl+E) /delta"2;

ddv (2,4)=(E_a2_b2-E_a2-E_b2+E) /delta”2;

ddv (3,4)=(E_bl_b2-E_bl-E_b2+E) /delta”2;

ddv(2,1)=ddv(1,2); ddv (3,1)=ddv(1,3); ddv (4,1)=ddv(1,4);
ddv (3,2)=ddv (2,3); ddv (4,2)=ddv (2,4);
ddv (4,3)=ddv (3,4);
end
P=Pb-inv (ddV+alpha*eye (4)) *dV;
al=P(1l); a2=P(2); bl=P(3); b2=P(4);
[E_new yy_m]=object_PEM_oel (pem_u_data,pem_y_data,al,a2,bl,b2,d);
if (E_new<E)
index_update=1;
alpha=alpha/2.0; Pb=P;
iter=iter+1;
fprintf (iter=%2d al=%5.3e a2=%5.3e bl1=%5.3e b2=%5.3e d=%2d
E=%5.3e\n’,iter,P(1),P(2),P(3),P(4),d,E);
else
index_update=0;

Process Identification Methods for Discrete-Time Difference Equation Models 331

Table 10.5 (Continued)

alpha=alpha*1.5;
end
if (iter==25| alpha>10.0710) break; end
end

object_PEM_oel.m
function [V yy_m]=object_PEM_oel (uu,yy,al,a2,bl,b2,d)
n=length (uu) ;
for i=1:(d+2) yy_m(i)=yy(i); end $initial values
for i=(d+3) :n
yy_m(i)=-al*yy m(i-1)-a2*yy_m(i-2)+bl*uu(i-1-d)+b2*uu(i-2-d);
end
V=(yy-yy_m) * (yy-yy_m)'/(n-d-2);
return

g_discrete_oel_PEM.m
function [next_x,y]=g_discrete_oel_ PEM(x,sub_delt,u,al,a2,bl,b2,
delay) ;
sub_subdelt=0.005; n=round (sub_delt/sub_subdelt) ;
A=[0-a2; 1 -all; B=[b2; bl]; C=[01];
delay_k=round (delay/sub_delt) ;
for i=1:n
dx=A*x+B*u (1000-delay_Kk) ;
x=x+dx*sub_subdelt;
end
next_x=x; y=C*x;
return

object_PEM_ocel.m
function [V yy_m]=object_PEM_oel (uu,yy,al,a2,bl,b2,d)
n=length (uu) ;
for i=1:(d+2) yy_m(i)=yy(i); end $initial values
for i=(d+3) :n
yy_m(i)=-al*yy_m(i-1)-a2*yy_m(i-2)+bl*uu(i-1-d)+b2*uu(i-2-d);
end
V=(yy-yy_m)* (yy-yy_m) '/ (n-d-2);
return

g_discrete_oel_PEM.m
function [next_x,y]l=g_discrete_oel_ PEM(x,sub_delt,u,al,a2,bl,b2,
delay) ;
sub_subdelt=0.005; n=round (sub_delt/sub_subdelt) ;
A=[0-a2; 1 -all; B=[b2; bl]; C=[01];
delay_k=round(delay/sub_delt) ;
for i=1:n
dx=A*x+B*u (1000-delay_Kk) ;
x=x+dx*sub_subdelt;
end
next_x=x; y=C*x;
return

(continued)

332 Process Identification and PID Control

Table 10.5 (Continued)

Command Window
>> PEM_oel
iter=1al=-1.497e+000 a2=6.663e-001 b1l=-7.420e-002 b2=7.653e-002 d=5
E=2.583e-001
iter=2al=-1.526e+000 a2=6.341e-001 b1=-6.690e-002 b2=9.757e-002 d=5
E=2.449e-001 iter=19 al=-1.814e+000 a2=8.231e-001 bl=4.457e-003
b2=4.408e-003d=5E=1.179e-005
iter=20 al=-1.814e+000 a2=8.230e-001 b1l=4.443e-003 b2=4.425e-003d=5
E=6.704e-006 al=-1.8142e+000 a2=8.2305e-001 b1=4.4433e-003 b2=4.4251e~-
003 d=5E=6.5084e-006

method is Elmin = 0and El’max = 10. The MATLAB code is shown in Table 10.6. It should be
noted that the variable d is an integer. So, the code rounds off the real number chosen by
the interval-halving algorithm to the closest integer number and it terminates when the
interval is 1.

Table 10.6 MATLAB code to estimate the OE model using the interval-halving method and the
Levenberg—Marquardt method.

PEM _oe2.m
clear;
delt=0.1; sub_delt=0.01; tf=15; tref=-delt+sub_delt; ys=0.0; n=round
(tf/sub_delt) ;
al=2.0; a2=1.0; bl=0.0; b2=1.0; delay=0.5; %process
C=[01]; x=[0; 0]; y=0.0; u_data=zeros(1,1001); u=0.0;
k=0; rand(’seed’,0); noise=(rand(1l,n)-0.5)*0.0;
for i=1:n
t=i*sub_delt; tt(i)=t; ym=y+noise (i); yy(i)=ym; yys(i)=ys;
if (t>1) ys=1.0; end
if (£>7) ys=0.0; end
if (abs(t-(tref+delt))<0.001)
k=k+1;
tref=t; u=2.5* (ys-ym); pem_t_data (k)=t; pem_u_data (k)=u;
pem_y_data (k) =ym;
end
for §j=1:1000
u_data(j)=u_data(j+1);
end
u_data (1001)=u; uu(i)=u;
[x,y]=g_discrete_oe2_PEM(x,sub_delt,u_data,al,a2,bl,b2,delay);
end
figure (1); plot(tt,yy,tt,uu); legend('y (L)', u(t)’);
PEM for the OE model
interval-halving method
dmax=10; dmin=0; iter=0;
al=-1.5; a2=0.6; b1l=0.002; b2=0.003; %$initial values for the LV method

o
°
o
°

Process Identification Methods for Discrete-Time Difference Equation Models 333

Table 10.6 (Continued)

while (1)
iter=iter+1;
interval=(dmax-dmin) /4;
dl=round (dmin+interval) ;
d2=round (dmin+2*interval) ;
d3=round (dmin+3*interval) ;
[P,fl]=1v_oe2 (pem_u_data,pem_y_data,al,a2,bl,b2,dl);
[P,f2]=1v_oe2 (pem_u_data,pem_y_data,al,a2,bl,b2,d2);
[P,f3]=1v_oe2 (pem_u_data,pem_y_data,al,a2,bl,b2,d3);
1f ((f1<f2) & (f2<=£f3)) dmax=d2; end
if((f1>=f2) & (£2>f3)) dmin=d2; end
1f((f1>=f2) & (£2<=£f3)) dmin=dl; dmax=d3; end
if (abs (dmax—-dmin)==1)
[Pmin, f1]=1v_oe2 (pem_u_data,pem_y_data,al,a2,bl,b2,dmin);
[Pmax, f2]=1v_oce2 (pem_u_data,pem_y_data,al,a2,bl,b2,dmax) ;
if (£f2<=f1l) d=dmax; P=Pmax; else d=dmin; P=Pmin; end
break;
end
fprintf ('iter=%2d £1=%8.4e £2=%8.4e £3=%8.4e d1=%2d d2=%2d d3=%2d
\n’,iter, fl,f2,£3,d1,d2,d3);
end
fprintf (Yal=%8.7f a2=%8.7f b1=%8.7f b2=%8.7f d=%2d
\n’,P(1),P(2),P(3),P(4),d);

1lv_oe2.m
function [P,E_new]=1lv_oe2 (pem_u_data,pem_y_data,al,a2,bl,b2,d)
delta=0.00001; $interval for the numerical derivatives
alpha=1.0; index_update=1; iter=0;
Pb=[al a2bl b2]’;
E=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2,bl,b2,d);
Sfprintf ('iter=%2d al=%8.4e a2=%8.4e bl1=%8.4e b2=%8.4e d=%2d
E=%8.4e\n’,iter,Pb(1l),Pb(2),Pb(3),Pb(4),d,E);

while (1)
if (index_update==1)

al=Pb(1l); a2=Pb (2); bl=Pb(3); b2=Pb (4) ;
E=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2,bl,b2,d); $object

function
E_al=object_PEM_oce2 (pem_u_data,pem_y_data,al+delta,a2,bl,b2,d)
E_a2=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2+delta,bl,b2,d);
E_bl=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2,bl+delta,b2,d);
E_b2=object_PEM_oce2 (pem_u_data,pem_y_data,al,a2,bl,b2+delta,d)

’

’

) ;
E_a2_a2=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2+2*delta,bl,b2,d);

)

)

E_al_al=object_PEM_oe2 (pem_u_data,pem_y_data,al+2*delta,a2,bl,b2,d
(
E_bl_bl=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2,bl+2*delta,b2,d
(
(

’

’

E_b2_b2=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2,bl,b2+2*delta,d
E_al_a2=object_PEM_oe2 (pem_u_data,pem_y_data,al+delta,a2+delta,bl,
b2,d);

(continued)

334 Process Identification and PID Control

Table 10.6 (Continued)

E_al_bl=object_PEM_oe2 (pem_u_data,pem_y_data,al+delta,a?2,bl+delta,
b2,d);

E_al_b2=object_PEM_oe2 (pem_u_data,pem_y_data,al+delta,a2,bl,b2+
delta,d);

E_a2_bl=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2+delta,bl+delta,
b2,d);

E_a2_b2=object_PEM_oe?2 (pem_u_data,pem_y_data,al,a2+delta,bl,b2+
delta,d);

E_bl_b2=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2,bl+delta, b2+
delta,d);

dv(l,1)=(E_al-E) /delta; %dv/dpl

dv(2,1)=(E_a2-E) /delta; $dV/dp2

dv (3,1)=(E_bl-E) /delta; $dV/dp3

dv(4,1)=(E_b2-E) /delta; $dv/dp4
ddv(1l,1)=(E_al_al-2*E_al+E)/delta”2; $d"2V/dpl”2
ddv (2,2)=(E_a2_a2-2*E_a2+E) /delta”2;

ddv (3,3)=(E_bl_bl-2*E_Dbl+E) /delta”2;

ddv (4,4)=(E_b2_b2-2*E_Db2+E) /delta”2;
ddv(1,2)=(E_al_a2-E_al-E_a2+E) /delta”2; $d"2V/dpldp2
ddv (1l,3)=(E_al_bl-E_al-E_bl+E)/delta”2;
ddv(l,4)=(E_al_b2-E_al-E_b2+E) /delta”2;

ddv (2,3)=(E_a2_bl-E_a2-E_bl+E)/delta”2;

ddv (2,4)=(E_a2_b2-E_a2-E_b2+E) /delta”2;

ddv (3,4)=(E_bl_b2-E_bl-E_b2+E) /delta”2;

ddv(2,1)=ddv(1,2); ddv (3,1)=ddv(1,3); ddv (4,1)=ddv(1,4);
ddv (3,2)=ddv (2,3); ddv (4,2)=ddv (2,4) ;
ddv (4,3)=ddv (3,4) ;
end
P=Pb-inv (ddV+alpha*eye (4)) *dV;
al=P(1l); a2=P(2); bl=P(3); b2=P(4) ;
[E_new yy_m]=object_PEM_oe2 (pem_u_data,pem_y_data,al,a2,bl,b2,d);
if (E_new<E)
index_update=1;
alpha=alpha/2.0; Pb=P;
iter=iter+1;
% fprintf (' iter=%2d al=%5.3e a2=%5.3e b1=%5.3e b2=%5.3e d=%2d
E=%5.3e\n’,iter,P(1),P(2),P(3),P(4),d,E)
else
index_update=0;
alpha=alpha*1.5;
end
if (iter==25 | alpha>10.0710) break; end
end

’

Process Identification Methods for Discrete-Time Difference Equation Models 335

Table 10.6 (Continued)

object_PEM_oe2.m
function [V yy_m]=object_PEM_ oe2 (uu,yy,al,a2,bl,b2,d)
n=length (uu) ;
for i=1:(d+2) yy_m(i)=yy(i); end %$initial values
for i=(d+3) :n
yy_m(i)=-al*yy m(i-1)-a2*yy_m(i-2)+bl*uu(i-1-d)+b2*uu(i-2-d);
end
V=(yy-yy_m)* (yy-yy_m)’/(n-d-2);
return

g_discrete_oe2_PEM.m
function [next_x,y]l=g_discrete_oe2_PEM(x,
sub_delt,u,al,a2,bl,b2,delay);
sub_subdelt=0.005; n=round (sub_delt/sub_subdelt) ;
A=[0-a2; 1-all; B=[b2; bl]; C=[01];
delay_k=round(delay/sub_delt) ;
for i=1:n
dx=A*x+B*u (1000-delay_Xk);
x=x+dx*sub_subdelt;
end
next_x=x; y=C*x;
return

g_discrete_oe2_PEM.m
function [next_x,y]l=g_discrete_oe2_ PEM(x,sub_delt,u,al,a2,bl,b2,
delay);
sub_subdelt=0.005; n=round (sub_delt/sub_subdelt) ;
A=[0-a2; 1-all; B=[b2; bl]l; C=[01];
delay_k=round (delay/sub_delt) ;
for i=1:n
dx=A*x+B*u (1000-delay_Xk);
x=x+dx*sub_subdelt;
end
next_x=x; y=C*x;
return

Command Window
>> PEM_oe2
iter=1 £1=3.4413e-005 £2=6.5084e-006 £3=2.7655e-004 d1= 3 d2=5d3=38
iter=2 £1=7.4870e-006 £2=1.2640e-005 £3=5.0833e-005 d1l= 4 d2= 6 d3=7
al=-1.8141750 a2=0.8230493 b1=0.0044433 b2=0.0044251d=5

10.4 Concluding Remarks

The ARX model predicts a one-step-ahead process output and the OE model predicts a
multistep-ahead process output. So, the prediction error identification method for the ARX
model estimates the model parameters by minimizing the one-step-ahead prediction errors.
Meanwhile, the prediction error identification method for the OE model estimates the model

336 Process Identification and PID Control

parameters by minimizing the multistep-ahead prediction errors. In most cases, the process
model should have a good capability of multistep-ahead prediction. So, the OE model is usually
preferred to the ARX model. But the prediction error identification method for the OE model
requires solving a complicated multidimensional nonlinear optimization problem to obtain the
model parameters, whereas the prediction error identification method for the ARX model
obtains the model parameters in a very simple way using the least-squares method. The initial
values for the nonlinear optimization method in the prediction error identification method for
the OE model are recommended to be chosen as the model parameters obtained by the
prediction error identification method for the ARX model.

Problems

10.1 Activate the following process using the biased-relay with a sampling time of 0.2 and
estimate the ARX model with a known time delay. Compare the model output and the
process output. In this case, calculate the model output using the OE model for which the
coefficients are those of the ARX model.

Ey() | dPy(0) | L dy(r)
ds +3 dr? +3 dr

+y(8) =u(t—0.2)

10.2 Estimate the ARX model with an unknown time delay for the activate process data of
Problem 10.1 and compare the model output and the process output. In this case, assume
that the ARX model is an SOPTD model. Also, calculate the model output using the OE
model for which the coefficients are those of the ARX model.

10.3 Estimate the OE model with a known time delay for the activated process data of
Problem 10.1 and compare the model output and the process output. In this case,
determine the initial estimates using the prediction error method for an ARX model.

10.4 Estimate the OE model with the unknown time delay for the activated process data of
Problem 10.1 and compare the model output and the process output. In this case,
determine the initial estimates using the prediction error method for an ARX model.

10.5 Activate the virtual process of Process 3 (refer to the Appendix for details) using a biased-
relay and estimate the ARX model with an unknown time delay. Compare the model
output and the process output. In this case, calculate the model output using an OE model
for which the coefficients are those of the ARX model.

10.6 Activate the virtual process of Process 3 (refer to the Appendix for details) using a biased-
relay and estimate the OE model with an unknown time delay. Compare the model output
and the process output.

Reference

Ljung, L. (1987) System Identification, Prentice-Hall, Englewood Cliffs, NJ.

11

Model Conversion from
Discrete-Time to Continuous-Time

Linear Models

11.1 Transfer Function of Discrete-Time Processes

In Part One, the Laplace transform was used to derive the transfer function of a continuous-time
process. For a discrete-time process, the z-tranform is used. Consider the following discrete-
time process:

y(kAD) = — ary((k — DA) — ay((k — 2)A1) — - — ay((k — m)Ar)
+hiu((k—1—=d)At) + bu((k—2—d)At) + -+ - +bu((k—n—d)Ar)
(11.1)
The z-transform of y(kAt?) is defined as
y(z) = Z{y(kAt)} = iy(km)ﬂ = y(0Ar) +y(1A)z ' +y(2A)z 2 4+ -+ (11.2)

k=0

One of the notable properties of the z-transform is y(2)z ' =Z{y(k — DAD} if y(kAt) =0,
k <0. The property is derived straightforwardly by comparing (11.2) with (11.3):

Z{y((k — 1A} = y(— 1A1) +y(0A1)z ' +y(1AD)z "2 +y(2A0)z 3+ -+ (11.3)

From (11.2) and (11.3), it is clear that y(z)z ' =Z{y(k — DA?)} if y(kAf)=0, k<O.
Equivalently, y(z)z*d: Z{y(k — d)At)} if y(kAt)=0, k<0. Then, (11.4) is obtained by
applying the z-transform to (11.1):

¥(z) = —ay(z)z ' —ay(z)z 7 = - —apy(2)z "+ bu(z)z Y (11.4)

+bhu(z)z" 24 o fhu(z)z "

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

338 Process Identification and PID Control

Rearranging (11.4), the following transfer function for the discrete-time process is obtained:

(z2) biz7'+byz i bz,
G(zy = Y& _ 115
(Z) M(Z) 1+a1271+ +anz*" z ()

or

n—1 n—2
G(z):ﬁ:blz +by" 4 -I-bnz_d (11.6)
u(z) a2 4 gy,

11.2 Frequency Responses of Discrete-Time Processes
and Model Conversion

The frequency response of the process can be obtained directly from the transfer function
without simulation or plant test. Assume that G(z) of the transfer function of the process is
available. Then, the amplitude ratio and the phase angle at the frequency w can be estimated by
setting z = exp(iwAt) as shown in (11.7) and (11.8):

AR (0) = |G(exp(iwAt))| = \/Re(G(exp(iwAt)))2 +Im(G(exp(iwAr)))? (11.7)

¢(w) = /G(exp(iwAt)) = arctan of Re(G(exp(iwA?))) and Im(G(exp(iwAt))) (11.8)

If the sampling time is small, then the frequency responses in the discrete-time model are
almost the same as those of the continuous-time model. Then, the frequency responses of the
continuous-time transfer function can be estimated approximately by estimating the frequency
responses of (11.7) and (11.8). Then, the discrete-time model can be converted to the
corresponding continuous-time model by applying the model reduction techniques mentioned
in Chapter 5.

Assume that there is a discrete-time transfer function G(z) and it is required to convert it to a
continuous-time SOPTD model:

Glz) = kexp(— 6s)

~ _ 11.9
1252 +2tés + 1 (11.9)

The frequency response of the discrete-time model is used. The model reduction method first
estimates the gain of the continuous-time model to fit the zero frequency-response data as
follows:

k = G(Z)|z:exp(i0At):l (1110)

and it estimates 7 and £ to satisfy the equality of (11.11) by solving (11.12) using the
least-squares method. Equation (11.12) is derived from (11.11) in a straightforward manner:

B k
\/(l —20?)’ + (21l w)?

kexp(—ifw)

G 1w At ~
|G(exp(iw;At))| 1 — 120 +i2tlw

(11.11)

Model Conversion from Discrete-Time to Continuous-Time Linear Models 339

|Glexp(iwiAr))|*w} + (477 — 21%)|G(exp(iw;Al)) P} = k* — |G(exp(iw;At))|?
(11.12)

O<wi<wy< - <wj< - <w, (11.13)

where it is recommended to choose w,, as the ultimate frequency w, of the discrete-time transfer
function. If w, is not available, then it should be chosen as the closest one to w,. The model
reduction method finally estimates the time delay of the continuous-time SOPTD model from
the phase-angle equation (11.14) with respect to w,,. Equation (11.15) is obtained directly
from (11.14):

d(wn) = — OBw,, +arctan2 (— 26w, 7, 1 — w?,7%) (11.14)

— ¢(w,,) + arctan2 (— 2étw,,, 1 — w2
b(@m) (-2

W

0:

(11.15)

where ¢(w,;,) is the phase angle of G(z) at w,,,. w,,, should be w,,, < w,. It is recommended to
choose w,,, as a frequency close to the ultimate frequency w, of the process. If w,,=w, is
chosen, then (11.14) and (11.15) become the following equations:

— T = — fw, +arctan2(— 2£w,T, | — 0>1?) (11.16)

_ m4arctan2(— 2&tw,, | — w)t?)

Wy

0 (11.17)
In summary, the continuous-time SOPTD model (11.9) can be estimated from (11.10), (11.12),
and (11.15).

Similarly, (11.18)—(11.20) can be derived to convert the discrete-time model to the
continuous-time FOPTD model:

k = G(2)].—expionn—1 (11.18)

k2 — |G(exp(ionAt)) |
__ VR [Glexplionan) -
|G(exp(iwnAt))|w,

o — ¢(wm) + arctan(- Twm) (1120)

Wy

Example 11.1
Obtain the transfer function of the discrete-time OE model obtained in Example 10.3 in
Chapter 10.

Solution The discrete-time model obtained in Chapter 10 is

F(kAL) = — a3((k — 1)AL) — a3 ((k — 2)At) + byu((k — 1 — d)At) + bou((k — 2 — d)A?)
(11.21)

340

Process Identification and PID Control

Table 11.1 MATLAB code for the model conversion in Example 11.2.

Conversion_d2c_ex2.m

clear;
w=0.0; delta_w=0.05;
delt=0.1; $sampling time
while (1) % search boundary in which wu
exists
w=w+delta_w;
g=g_discrete_ex2 (w,delt) ;
if (imag(g)>0.0) break; end
end
wl=w-delta_w; w2=w; 3w l<wu < w2
while (1) % find wu using the bisection
method
w=(wl+w2)/2;
gl=g_discrete_ex2 (wl,delt);
g=g_discrete_ex2 (w,delt);
if (imag(g) *imag(gl)>0.0) wl=w; else
w2=w; end
if (abs(imag(g))<0.000001) break; end
end
wu=w; $ ultimate frequency wu is found
k=abs (g_discrete_ex2(0.0,delt));
for j=1:10 % least square method
w=(j-1) *wu/9.0;
G(j)=g_discrete_ex2 (w,delt);
y(3,1)=k-(abs(G(3))"2);
phi_1(j,1)=(abs(G(3))"2)*w"4;
phi_2(j,1)=(abs(G(J))"2)*w"2;
end % P_hat: solutionof the least square
method
PHI=[phi_1phi_2]; Y=y;
P_hat=inv (PHI’ *PHI) *PHI' *Y;
tau=P_hat (1)~ (1.0/4.0);
xi=((P_hat (2)+2*tau”2)/
(4*tau~2))"0.5;
theta=(pitatan2 (-2*xi*tau*wu, 1-
wut2*tau~2)) /wu;
% tau: time contant, xi: damping factor,
theta: time delay
fprintf (' k=%5.3f tau=%5.3f \n’,
k, tau) ;
fporintf (! xi=%5.3f theta=%5.3f
\n’,xi, theta);

g_discrete_ex2.m

function

[G]=g_discrete_ex2 (w,delt)
z=exp (1*w*delt) ;
G=z"(-5)*(0.004443*z" (-1)
+0.0044251*z~(-2))/ (1-
1.8142*z7 (-1)+0.82305*z" (=-2));
end

Command Window
>> conversion_d2c_ex2
k=1.002 tau=1.014 xi=0.984
theta=0.551

Model Conversion from Discrete-Time to Continuous-Time Linear Models 341

Table 11.2 MATLAB code for the model conversion in Example 11.3.

conversion_d2c_ex3.m g_discrete_ex3.m

clear; function
w=0.0; delta_w=0.05; [G]=g_discrete_ex3 (w,delt)
delt=0.1; $sampling time z=exp (i*w*delt) ;
while (1) % search boundary in which wu G=z"(-5)*(0.004443*z" (-1)
exists +0.0044251*z"(-2))/(1-1.

w=w+delta_w; 8142*z” (-1)+0.82305*z" (=-2));
g=g_discrete_ex3 (w,delt) ; end

if (imag(g)>0.0) break; end

end
wl=w-delta_w; w2=w; 3 w 1< wu < w2
while (1) % find wu using the bisection
method

w=(wl+w2)/2;
gl=g_discrete_ex3(wl,delt);
g=g_discrete_ex3(w,delt);

if (imag(g) *imag (gl)>0.0) wl=w; else
w2=w; end

if (abs(imag(g))<0.000001) break; Command Window
end >> conversion_d2c_ex2
end k=1.002 tau=2.320 theta=1.001

wu=w; % ultimate frequency wu is found
k=abs (g_discrete_ex3(0.0,delt));
g=g_discrete_ex3 (wu,delt);

tau=sqrt (k*2-abs (g) *2) /abs (g) /wu;
theta= (pitatan (-tau*wu)) /wu;

% tau: time contant, theta: time delay,
k: static gain

fprintf (" k=%5.3f tau=%5.3f theta=%
5.3f \n’, k, tau, theta) ;

where @) =— 1.8142, a, = 0.823 05, b; = 0.004443 and b, = 0.004425 1. d, = 5. The
sampling time is A7 =0.1. From (11.21) and the model parameters, it is clear that the transfer
function is

§(z) bz '4bz? 5 0.004443z7'40.0044251272

G = — = =
Q)=o) " Tra Tt a2’ 1 1.8142:-1+0.82305z-2 -

(11.22)

Example 11.2
Convert the discrete-time SOPTD model in Example 11.1 to the continuous-time SOPTD
model.

Solution The continuous-time SOPTD model by (11.10), (11.12) and (11.17) is

y(s) 1.002exp(— 0.55s)
u(s) 1.014%s2+2 x 1.014 x 0.984s + 1

(11.23)

342 Process Identification and PID Control

The MATLAB code for the model conversion from the discrete model to the continuous
model is shown in Table 11.1. Note that the continuous-time SOPTD model obtained is very
close to the real process in Example 10.3. Theoretically, if the sampling time is smaller, then the
continuous-time model obtained is closer to the real process.

Example 11.3
Convert the discrete-time SOPTD model in Example 11.1 to the continuous-time FOPTD
model.

Solution The continuous-time FOPTD model by (11.18), (11.19) and (11.20) is

_ Y(s) _ 1.002exp(— 1.002s)
O =) = 23205+ 1 (11.24)

The MATLAB code for the model conversion from the discrete model to the continuous
model is shown in Table 11.2.

Problems

11.1 Activate the following process using a step input signal with a sampling time of 0.2 and
estimate the ARX model with a known time delay. Compare the Nyquist plot of the ARX
model and that of the process.

Ey() | dPy(0) | L dy(r)
dr +3 dr? 3 dt

+y(8) =u(t—0.2)

11.2 Estimate an ARX model with an unknown time delay for the activated process data of
Problem 11.1 and compare the Nyquist plot of the ARX model and that of the process.

11.3 Estimate the OE models with an unknown time delay for the activated process data of
Problem 11.1 and compare the Nyquist plots of the OE models and that of the process.

11.4 Convert the discrete-time models of Problems 11.1-11.3 to a continuous-time FOPTD
model and tune the PID controller using the IMC tuning rule and show the control
performance of the PID controller for the process of Problem 11.1.

11.5 Convert the discrete-time models of Problems 11.1-11.3 to a continuous-time SOTPD
model and tune the PID controller using the ITAE-2 tuning rule and show the control
performance of the PID controller for the process of Problem. 11.1.

11.6 Activate the virtual process of Process 3 (refer to the Appendix for details) using a step
input signal and estimate the ARX model an the unknown time delay. Next, obtain the
continuous-time SOPTD model from the discrete-time ARX model and tune the PID
controller using the ITAE-2 tuning rule. Finally, show the control performance of the PID
controller for Process 3 (refer to the Appendix for details).

11.7 Solve Problem 11.6 again with the OE model with an unknown time delay.

Bibliography

Seborg, D.E., Edgar, T.F. and Mellichamp, D.A. (1989) Process Dynamics and Control, John Wiley & Sons, Inc.
Sung, S.W. and Lee, I. (1996) Limitations and countermeasures of PID controllers. Industrial & Engineering Chemistry
Research, 35, 2596.

Part Four

Process Activation

The tuning of a PID controller or the design of an advanced model-based controller goes
through the following steps. Step 1, activate the process with a test signal generator. Step 2,
estimate the process model using the process identification algorithms. Step 3, tune the PID
controller or design the advanced model-based controller. Step 2 and Step 3 are described in
Part Three and Part Two respectively. This chapter talks about the test signal generator in
Step 1. If the process is activated too aggressively, then the quality of the products from the
process may not be acceptable and the safety of the process is not guaranteed. Meanwhile, if
activation is not enough, then an accurate process model cannot be obtained because the
information included in the activated data is limited and the uncertainties, such as measurement
noise and disturbances, become dominant. So, the goals in Step 1 are activating the process in as
short a time as possible and activating the dynamic information (frequency components) as
much as possible. One of the most efficient methods for process activation is the relay feedback
method. If the process is activated with the relay feedback method, then it is straightforward to
detect the time-scale (ultimate period) of the process and what frequency components are
included in the activated data. Then, it is easy to determine the termination time for the process
activation and the design parameters (for example, the maximum frequency, the sampling time,
the parameters of the weight) for the process identification methods. So, relay feedback
methods and their modifications are introduced in this part.

12

Relay Feedback Methods

In this chapter, the conventional relay feedback method is first introduced. It is the simplest and
has been the most widely used in industry for a long time. In particular, it is one of the most
important process activation methods for automatic tuning of a PID controller. Next, three
important relay feedback methods recently developed to overcome the several problems of the
conventional relay feedback methods are introduced. The first method activates the process
with a guarantee of a symmetric oscillation under the circumstance of disturbances so that the
describing function analysis method provides accurate frequency response data of the process.
The second method can guarantee a symmetric oscillation under the circumstance of
disturbances and nonlinearity. The third method can provide estimates for the frequency
responses for which the phase angle is specified a priori and also manipulate a large range of
operation, possibly larger than the magnitude of the relay.

12.1 Conventional Relay Feedback Methods

The conventional relay feedback method was proposed by Astrom and Hagglund (1984). It is
the simplest among the various versions of relay feedback methods. Two types are available,
according to the actual operations: unbiased relay and biased relay.

12.1.1 Unbiased-Relay Feedback Method

Chapter 8 in Part Three briefly explained how to activate a process using the unbiased-relay
feedback method, and the MATLAB code for its implementation was introduced. Let us
summarize it again. The symbol for an unbiased relay is shown in Figure 12.1 and the block
diagram of an unbiased-relay feedback control system is shown in Figure 12.2.

In Figure 12.1, the x-axis and the y-axis represent the input of the relay and the output of
the relay respectively. From the symbol in Figure 12.1, it is clear that the relay output is d if the
input is greater than zero; otherwise the relay output is —d. For example, the relay output will be
the square signal in Figure 12.3 if the relay input is the sine signal a sin(wf?).

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

346 Process Identification and PID Control

Input Output

° J ull) >

Figure 12.2 Block diagram of the unbiased-relay feedback control system to activate the process
output.

relay input relay output
A

d

Figure 12.3 Relay output for a sine input.

Now, consider the relay feedback control system in Figure 12.2 to activate the process.
It should be noted that the relay input is 0 — y(¢), where y(¢) is the process output. So, the upper
value d of the relay is applied to the process when the process output is less than the reference
value of zero, and vice versa. That is, u(¢) =d if y(¢#) <0 and u(t) = —d if y(¢) > 0.

Figure 12.4 shows the activated process input and the process output by the unbiased-relay
feedback method, where y..¢(¢#) =0 because it is the unbiased-relay feedback method.

The detailed procedure for the unbiased-relay feedback method is as follows. First, the upper
(on) value of the relay output is applied to drag the process output out of the initial value,
as shown in Figure 12.4. Second, the lower (off) value of the relay is applied when the process
output deviates from the initial state. Third, the upper value of the relay is applied when the
process output is less than the reference value, and vice versa. That is, u(f) = d if y(¢) <0 and
u(t) = —d if y(z) > 0. Then, the process input and output usually reach a cyclic steady state
(which means that the period and the peak value of the process output do not change) after three
or four cycles.

The remarkable properties of the unbiased-relay feedback method are summarized as
follows. First, the time-length of the process activation is automatically determined by the three
or four on—offs of the relay. Second, it has no tuning parameters except the magnitude
of the relay. Third, the main frequency component included in the process input and output of

Relay Feedback Methods 347

d
¢ b X%
i VU AN WP . ENN S _.;'.ta.':._._ i
u() | o
05 L] s y(t) < > i
———— Yret(D)
-1 ¢ . L) I)]
0 5 10 15 20

t

Figure 12.4 Activated process output by the unbiased-relay feedback method.

the cyclic-steady-state part is the fundamental frequency component. Fourth, the frequency of
the cyclic steady state is very close to the ultimate frequency of the process. The first property
and the second property make the activation method the simplest and easiest in implementation.
The third property says that only the fundamental frequency response model from the cyclic-
steady-state part can be estimated.

Example 12.1
Choose all the processes to which the unbiased-relay feedback method can be applied.

xp(—0.55)/(s + 1)

(P1) G(s)=e

(P2) G(s) =exp(—0.25)/(s+1)
(P3) G(s)=1/(s+1)

(P4) G(s)=1/(s+1)

(P5) G(s) = (—02s+1)/(s+1)°
(P6) G(s)=1/(s+1)

Solution Processes P1, P2, P3 and PS5 have the ultimate frequencies, but P4 and P6 have
no ultimate frequencies. So, the unbiased relay cannot be applied to processes P4 and P6.
The unbiased-relay feedback system will produce a cycle in which the period converges to zero,
resulting in no cyclic-steady-state cycling for processes P4 and P6.

Example 12.2
Activate the process G(s) =exp(—0.25)/(s + 1)? using the unbiased-relay feedback method.

Solution The activated process input and output and the MATLAB code to activate the
process are shown Figure 12.5 and Table 12.1 respectively.

Example 12.3
Activate the process G(s) =exp(—0.25)/(s + 1)2 using the unbiased-relay feedback method
when the process output is contaminated with uniformly distributed random noise between
—0.1 and 0.1.

348 Process Identification and PID Control

u(t)
--------- y(t)
05 ——— Yees(1) |

t

Figure 12.5 Activated process output by the unbiased-relay feedback method.

Table 12.1 MATLAB code to simulate Figure 12.5.

unbiased_relay_ex2.m
clear;

delt=0.01; t£f=10; n=round (tf/delt) ;

x=zeros (2,1); u_data=zeros(1,500);
t_on=0.0; t_off=0.0; P_on=0;
P_off=0;

ymin=0.0; ymax=0.0; y=0.0; yref=0.0;

index=0; y_delta=0.1; d=1.0;
% initial phase:index=0, relay
phase:index=1
for i=1:n
t=i*delt; yy(i)=y; yyref (i)=yref;
tt(i)=t;
if (index==1)
if(yy(i)>yref & yy(i-1)<=yref)
P_on=t-t_on; t_off=t;
ymax_f=ymax; ymax=0.0;
end
if(yy(i)<=yref & yy(i-1)>yref)
P_off=t-t_off; t_on=t;
ymin_f=ymin; ymin=0.0;
end
end
if (yy(i)>yref)
u=-d; if (yy(i)>ymax) ymax=yy
(1) ; end
end
if (yy (i) <=yref)
u=d; if (yy (i) <ymin) ymin=yy (i) ;
end
end

g_unbiased_relay_ex2.m
function [next_x,y]=g_unbia-
sed_relay_ex2(x,delt,u)
subdelt=delt; n=round (delt/
subdelt) ;
A=[0-1;1-2];B=[1;0];C=[01];
delay=0.2;
delay_k=round (delay/delt
+0.00001) ;
for i=1:n
dx=A*x+B*u (500-delay_Xk) ;
x=x+dx*subdelt;
end
next_x=x; yo=C*x; y=yo;
return
end

command window
>>unbiased_relay_ex?2
Period =2.1400 Peak Value =
0.1344
Relay Magnitude =1.0000

Relay Feedback Methods 349

Table 12.1 (Continued).

1if (index==0)
u=d; if(yy(i)>y_delta) index=1;
end
end
for j=1:499
u_data (j)=u_data(j+1);
end

u_data (500)=u; uu(i)=u;
[x,v]=g_unbiased_relay_ex2 (x,
delt,u_data);
end
P=P_on+P_off; a=(abs (ymax_f) +abs
(ymin_£))/2;
fprintf (' Period=%7.4f PeakValue=%
7.4f RelayMagnitude=%7.4f\n’,P, a,

d);
figure (1) ; plot(tt,uu, tt,yy, tt,yyr-
ef); 11>

Solution The activated process input and output and the MATLAB code to activate the
process are shown Figure 12.6 and Table 12.2 respectively. In this example, the readers should
pay attention to the technique to manipulate the measurement noise. If the MATLAB code of
Table 12.1 is directly applied to the case of the measurement noise, then the relay output will
show severe fluctuations around the zero-crossing point. So, the hysteresis is used to prevent the
phenomenon, as shown in Table 12.2. The frequency of the oscillation moves to a lower
frequency region compared with the ultimate frequency if the hysteresis is used. Note that the
period in Table 12.2 is longer than that in Table 12.1 because of the hysteresis.

Figure 12.6 Activated process output by the unbiased-relay feedback method for the case of
measurement noise.

350

Process Identification and PID Control

Table 12.2 MATLAB code to simulate Figure 12.6.

unbiased_relay_ex3.m

clear; delt=0.01; tf=10;
n=round (tf/delt) ;
u_data=zeros (1,500);
x=zeros (2,1);

t_on=0.0; t_off=0.0;
P_on=0; P_off=0;

y=0.0; yref=0.0; np=0;
index=0; y_delta=0.2;
d=1.0;

% initial phase:index=0,
relay phase:index=1
hys=0.1; index_up=1;
index_down=0; ymin=0.0;
ymax=0.0;

rand ('’ seed’,0); noise=(rand
(1,n)-0.5)*0.2;
for i=1:n
t=i*delt; yy(i)=y+tnoise
(1); yyref (i)=yref; tt (i)
=t;
if (index==1)
if (index_down==1 &
index_up==0 & yy (1) <=(yref-
hys) & yy(i-1)>(yref-hys))
index_up=1;
index_down=0; ymin_f=ymin;
ymin=0.0;
t_on=t; P_off=t_on-
t_off;
end
if (index_up==1 &
index_down==0 &
yy (1) > (yref+hys) & yy (i-1)
<=(yref+hys))
index_up=0;
index_down=1; ymax_f=ymax;
ymax=0.0;
t_off=t;
P_on=t_off-t_on; np=np+l
end
end
if (index_down==1)
u=-d; if (yy (i) >ymax)
ymax=yy (i) ; end
end
if (index_up==1)

g_unbiased_relay_ex3.m

function
[next_x,y]l=g_unbiased_relay_ex3
(x,delt,u);
subdelt=delt; n=round (delt/
subdelt) ;
A=[0-1;1-2]; B=[1;0]; C=[01];
delay=0.2;
delay_k=round(delay/delt
+0.00001) ;
for i=1:n
dx=A*x+B*u (500-delay_Xk) ;
x=x+dx*subdelt;
end
next_x=x; yo=C*x; y=yo;
return
end

command window
>>unbiased_relay_ex3
Period =2.4600 Peak Value =0.2653
Relay Magnitude =1.0000

Relay Feedback Methods 351

Table 12.2 (Continued)

u=d; if (yy(i)<ymin)
ymin=yy(i); end
end
if (index==0)
u=d;
if(yy(i)>y_delta)
index=1;
if (yref<y_delta)
u=-d; index_up=0;
index_down=1; end
end
end
for j=1:499
u_data (j)=u_data(j+1); end
u_data (500)=u; uu(i)=u;
P=P_on+P_off;
[x,vy]=g_unbiased_
relay_ex3 (x,delt,u_data);
end
P=P_on+P_off; a=(abs
(ymax_f)+abs (ymin_£f))/2;
fprintf (' Period = %7.4f Peak
Value=%7.4f RelayMagnitude
=%7.4f \n’,P,a,d);
figure (1) ; plot(tt,yyref, tt,
uu, tt,vyy);

12.1.2 Biased-Relay Feedback Method

Chapter 8 in Part Three briefly explained how to activate the process using the biased-relay
feedback method, and the MATLAB code for its implementation was introduced. Let us
summarize it again. The block diagram of the biased-relay feedback control system is shown in
Figure 12.7 (Shen et al., 1996a).

Now, consider the relay feedback control system in Figure 12.7 to activate the process. It
should be noted that the relay input is y.¢(z) — y(#), where y(?) is the process output and y,.((?) is
the reference value for the relay on—off. So, the upper value d of the relay is applied to the
process when the process output is less than the reference value y,.¢(?), and vice versa. That is,

u(t) =d if y(1) < yrer(t) and u(t) = —d if y(1) > yrer(1).

Yiee(f) +C vl Gs) ¥

Figure 12.7 Block diagram of the biased-relay feedback control system to activate the process output.

352 Process Identification and PID Control

————— Yret(2)
-0.5 u(ty |1

......... y(1)

Figure 12.8 Activated process output by the unbiased-relay feedback method with y..¢(¢) =0.3.

Figure 12.8 shows the activated process input and the process output by the biased-relay
feedback method with y,.{(¢) =0.3.

The remarkable properties of the biased-relay feedback method are summarized as follows.
First, the time-length of the process activation is automatically determined by the three or four
on—offs of the relay. Second, it has no tuning parameters except the magnitude of the relay and
the reference value. Third, the frequency components included in the cyclic-steady-state part
are the two frequency components corresponding to zero and the fundamental frequency.
Meanwhile, the initial (unsteady-state) part of the activated process input and the process
output includes various frequency components. Fourth, the frequency of the cyclic steady state
is different from the ultimate frequency of the process. The fundamental frequency of the
biased-relay feedback control system is lower than that of the unbiased-relay feedback control
system. The first property and the second property make the activation method the simplest and
easiest in implementation. The third property implies that only the two frequency response data
of the zero and fundamental frequency from the cyclic-steady-state part can be identified, while
many other frequency response data from the initial (unsteady-state) part of the process input
and output can theoretically be obtained. The fourth property means that the ultimate frequency
response data from the cyclic-steady-state part cannot be estimated.

Example 12.4
Simulate Figure 12.6 again with y.(f) =0.3.

Solution The simulation results are shown in Figure 12.8. It is straightforward to obtain the
simulation results in Figure 12.8 by replacing yref =0.0 in Table 12.2 by yref =0.3.

12.2 Relay Feedback Method to Reject Static Disturbances

Consider the process input and the process output in Figure 12.8. Clearly, the process input u(?)
is asymmetric (that is, the two half periods are totally different) because y,.((?) is not zero. This
phenomenon results in two problems. First, the fundamental frequency is far from the ultimate
frequency. Second, the harmonics terms become too large to be neglected. Then, the describing
function analysis method cannot provide acceptable accuracy in estimating the frequency

Relay Feedback Methods 353

response model for the ultimate frequency. Fourier analysis can estimate the frequency
response exactly for the fundamental frequency, but the estimate is not for the ultimate
frequency because the fundamental frequency is far from the ultimate frequency.

In this section, a relay feedback method is introduced to prevent the phenomenon. Consider
the relay feedback control system in Figure 12.9 (Shen et al., 1996b; Park et al., 1997). It
removes the effects of disturbances or input reference value y..¢(¢) by adjusting the output
reference value u((?) for the relay on—off as much as the disturbance. Here, u.(¢) and u(¢) are
the relay output and the process input respectively.

Park et al. (1997) and Shen et al. (1996b) proposed the following update rule for u..¢(?):

(amax,k 1+ Amin k — l)d
|amax,k -1 | + ‘aminﬁk— 1 |

Uref ko = Urefk—1 — & (12])

where dyax k1 and dpyin i1 are the (kK — 1)-th peak value and the (k — 1)-th valley value of the
process output. u.r is the kth reference value. « is the tuning parameter to compromise
between the convergence rate and the robustness.

Figure 12.10 shows the responses of the process G(s) = exp(—0.2s)/(s + 1)*controlled by the
relay feedback method for static disturbance rejection. A static disturbance of 0.3 is added to
the relay output from the beginning of the relay feedback test. The update of u,.¢(?) starts from the
second cycling. The tuning parameter is chosen as & = 0.5. As expected, u(?) and y(7) become
symmetric in the cyclic steady state, as shown in Figure 12.10, because the update rule of (12.1)
adjusts u,.¢(?) as much as the static disturbance. Also, the update rule provides an acceptable
convergence rate. The MATLAB code to simulate Figure 12.10 is shown in Table 12.3.

Yeei(t) +C u(t) +C : u(t) G(s) y(®)
— — + T

uref(t)

Figure 12.9 Block diagram of the relay feedback control system to remove static disturbances.

Figure 12.10 Response of the process for the relay feedback method to remove static disturbances.

354 Process Identification and PID Control

Table 12.3 MATLAB code to simulate Figure 12.10.

relay_Dl.m
clear; delt=0.01; tf=20; n=round (tf/delt);
u_data=zeros (1,500); x=zeros(2,1);
t_on=0.0; t_off=0.0; P_on=0; P_off=0;
y=0.0; yref=0.0; np=0; index=0; y_delta=0.2; d=1.0; dis=0.3;
% initial phase:index=0, relay phase:index=1
hys=0.05; index_up=1; index_down=0; ymin=0.0; ymax=0.0; uref=0.0;
rand (’seed’,0); noise=(rand(1l,n)-0.5)*0.05;
for i=1:n
t=i*delt; yy(i)=y+noise(i); yyref (i)=yref; tt(i)=t;
if (index==1)
if (index_down==1 & index_up==0 & yy (i) <=(yref-hys) & yy(i-1)>
(yref-hys))
index_up=1; index_down=0; ymin_f=ymin; ymin=0.0;
t_on=t; P_off=t_on-t_off;
end
if (index_up==1 & index_down==0 & yy (i) > (yref+hys) & yy(i-1)<=(yref
+hys))
index_up=0; index_down=1; ymax_f=ymax; ymax=0.0;
t_off=t; P_on=t_off-t_on; np=np+l;
if (np>=2)
uref=uref-0.5* (ymax_f+ymin_f) *d/ (abs (ymax_f) +abs (ymin_£f));
end
end
end
if (index_down==1)
ur=-d; if (yy(i)>ymax) ymax=yy(i); end
end
if (index_up==1)
ur=d; if (yy(i)<ymin) ymin=yy(i); end
end
if (index==0)
ur=d;
if(yy(i)>y_delta)
index=1;
if (yref<y_delta) ur=-d; index_up=0; index_down=1; end
end
end
for j=1:499 u_data(j)=u_data(j+1); end
u_data (500)=ur+uref+dis; uu(i)=ur+uref; uuref (i) =uref;
P=P_on+P_off;
[x,y]l=g_relay_Dl(x,delt,u_data);
end
P=P_on+P_off; a=(abs (ymax_f)+abs (ymin_£f))/2;
fprintf (' Period=%7.4f PeakValue=%7.4f RelayMagnitude=%7.4f\n’, P, a,
d);
figure (1); plot (tt,yyref, tt,yy, tt,uuref, tt,uu);

Relay Feedback Methods 355

Table 12.3 (Continued)

g_relay_Dl.m

function [next_x,yl=g_relay_Dl (x,delt,u);
subdelt=delt; n=round(delt/subdelt) ;
A=[0-1;1-2]; B=[1;0]; C=[01]; delay=0.2;
delay_k=round(delay/delt+0.00001) ;
for i=1:n

dx=A*x+B*u (500-delay_Xk) ;

x=x+dx*subdelt;
end
next_x=x; yo=C*x; y=yo;
return
end

command window
>>relay D1
Period=2.6300 Peak Value =0.2225 Relay Magnitude =1.0000

The relay feedback method to reject the disturbance can be applied to the biased-
relay feedback method. As shown in Figure 12.8, the biased relay with y,.¢(#) = 0.3 cannot
provide a symmetric oscillation, resulting in larger harmonics. This problem can be
easily solved by defining a new variable of y,.w(?) =y(?) — yref(?) and applying the relay
feedback method for the disturbance rejection to the new variable of y,.(?) instead of the
process output y(z). As shown in Figure 12.11, it successfully obtains a symmetric
oscillation at y..¢(¥)=0.3. The MATLAB code to simulate Figure 12.11 is shown in
Table 12.4.

1.5 T T T

. o X
R N T SRl g e
. - oW

Figure 12.11 Response of the process for the relay feedback method to remove static disturbances with
yrcf([) =0.3.

356 Process Identification and PID Control

Table 12.4 MATLAB code to simulate Figure 12.11.

relay_D2.m
clear; delt=0.01; tf=20; n=round (tf/delt);
u_data=zeros (1,500); x=zeros(2,1);
t_on=0.0; t_off=0.0; P_on=0; P_off=0;
y=0.0; yref_new=0.0; yref=0.3; np=0; index=0; y_delta=0.2; d=1.0;
% initial phase:index=0, relay phase:index=1
index_up=1; index_down=0; ymin=0.0; ymax=0.0; uref=0.0;
for i=1:n
t=i*delt; yy_new(i)=y-yref; yy(i)=y; yyref (i)=yref; tt(i)=t;
if (index==1)
if (index_down==1 & index_up==0 & yy_new (i) <=yref_new & yy_new (i-1)
>yref_new)
index_up=1; index_down=0; ymin_f=ymin; ymin=0.0;
t_on=t; P_off=t_on-t_off;
end
if (index_up==1 & index_down==0 & yy_new (1) >yref_new & yy_new (i-1)
<=yref_new)
index_up=0; index_down=1; ymax_f=ymax; ymax=0.0;
t_off=t; P_on=t_off-t_on; np=np+l;
if (np>=2) uref=uref-0.4* (ymax_f+ymin_f) *d/ (abs (ymax_f) +abs
(ymin_f)); end
end
end
if (index_down==1)
ur=-d; if (yy_new (i) >ymax) ymax=yy_new (i); end
end
if (index_up==1)
ur=d; if (yy_new(i)<ymin) ymin=yy_new (i); end
end
if (index==0)
ur=d;
if(yy_new(i)>y_delta)
index=1;
if (yref_new<y_delta) ur=-d; index_up=0; index_down=1; end
end
end
for j=1:499%9 u_data(j)=u_data(j+1); end
u_data (500)=ur+uref; uu(i)=ur+uref; uuref (i) =uref; P=P_on+P_off;
[x,y]=g_relay D2(x,delt,u_data);
end
P=P_on+P_off; a=(abs (ymax_f)+abs (ymin_£f))/2;
fprintf (' Period=%7.4f Peak Value =%7.4f RelayMagnitude=%7.4f \n’,P, a,
d);
figure (1); plot(tt,yyref, tt,yy, tt,uuref, tt,uu) ;figure(1l); plot(tt,yyr-
ef, tt,yy, tt,uuref, tt,uu);

g_relay_D2.m
function [next_x,yl=g_relay_D2 (x,delt,u);

Relay Feedback Methods 357

Table 12.4 (Continued)

subdelt=delt; n=round(delt/subdelt) ;
A=[0-1;1-2]; B=[1;0];
C=[01]; delay=0.2;
delay_k=round (delay/delt+0.00001) ;
for i=1:n
dx=A*x+B*u (500-delay_Xk) ;
x=x+dx*subdelt;
end
next_x=x; yo=C*x; y=yo;
return

command window
>>relay_D2
Period =2.1500 Peak Value =0.1342 Relay Magnitude =1.0000

12.3 Relay Feedback Method under Nonlinearity and Static Disturbances

The relay feedback method introduced in this section is used to manipulate output nonlinea-
rities and static disturbances. Let us call it Relay_ND. It guarantees the symmetry of the relay
output by setting the time length of the relay off to the half period of the previous cycle. And it
rejects the effects of static disturbances and output nonlinearity by changing the input reference
value of the relay. Relay_ND can be successfully applied to identify a Wiener-type nonlinear
process with a static disturbance.

It activates the process using the following algorithm (Sung and Lee, 2006):

Py

ult) = —d fortofige < 1< lofrj + —5 (12.2)
Py Py _
ton,k - toff,k + Tl7 Yrefk = y(ton,k) fort = toff,k+) ! (123)
Py
u(t) =d fortogrp+ —5—= < I<lomp+1 (12.4)

1.5P; _
= andy(1) = yers (12.5)

lottj+1 =1, Pr=totji1—lotre TOrt > togj+ —
where u(?) and y(7) are the relay output and the process output respectively. Yier i, Pk foft.i
and ?,, « are the reference value, period, time for relay off and time for relay on of the kth cycle.
The algorithm can be represented graphically as shown in Figure 12.12.

The remarkable difference between the conventional relay and Relay_ND is that Relay_ND
uses the half period of the previous cycle to determine the relay off, which produces a symmetric
cycling, while the conventional relay uses the point at which the process output crosses the
reference value, which means that it has no equipment to enforce a symmetric cycling.
Equation (12.4) enforces the symmetry of the relay output in the cyclic steady state.
Yret.k = Y(fon 1) in (12.3) makes the two crossing points in one cycle between the process output
and the reference value converge to the same value, which rejects the effects of static

358 Process Identification and PID Control

Viet \//\\{‘ \{

bott k-1 bott k T boft ke 1 t

u(t)

v

fon,k = tofi k + Pet/2

Figure 12.12 Relay feedback method under nonlinearity and static disturbance conditions.

disturbances. For the case of severe measurement noise, it is recommended that Y., = a;
+ a,P/2, where a, and a, are the estimates of the least-squares method of which the object
function is

N

a‘ff‘gz (1) — a1 — ax(t; — togr))°
i—1

subject to

P/2—aP < ti —toft SP/Z

P and ft.¢ are the previous period and the time corresponding to the recent relay off.
The effects of the measurement noise decrease as « increases, but a should be small
enough for y to be approximately linear with respect to ¢ within the time span P/2 — aP <
t—tog < P/2.

Example 12.5
Simulate Relay_ND for the case of no noise (o« =0) and a static input disturbance d= —0.5
with the process y(s)/u(s) = exp(—0.55)/(s + 1)2.

Solution The MATLAB code to simulate Relay_ND and the results are shown in Table 12.5
and Figure 12.13 respectively. The estimate for the ultimate period is close to the true value of
3.27 even under the circumstance of the static disturbance.

Example 12.6

Simulate Relay_ND for the case of measurement noise (o =0.1) and a static disturbance
d=—0.5 with the process y(s)/u(s) =exp(—0.5s)/(s + 1)%. The measurement noise is uni-
formly distributed random noise between —0.05 and 0.05.

Solution The MATLAB code to simulate Relay_ND and the result are shown in Table 12.6
and Figure 12.14 respectively. It shows acceptable robustness to the measurement noise.

Relay Feedback Methods

359

Table 12.5 MATLAB code to simulate Example 12.5.

relay_NDl.m
clear;
t=0; tf=35.0; delt=0.01; n=round(tf/delt);
y=0; x=[0;0]; delay=0.5; n_delay=round (delay/delt) ;
u=zeros(1,500); u_relay=0; dis=-0.5; d=1.0;
yref=0.0; yref_on=0;
tref=0.0; toff_ref=0.0; ton_ref=0.0;
m=0; index=0; y_delta=0.1;
for k=1:n
u_relay_b=u_relay; % one sampling before : u_relayb
tp=t-tref; toff=t-toff_ref; ton=t-ton_ref;
if (index==0)
u_relay=d; toff_ref=t; p=t; if (y>y_delta) index=1; end
else
if (m<2) % conventional relay
if ((y>yref) & (ton>p/4)) u_relay=-d; end
if ((y<yref) & (toff>p/4)) u_relay=d; end
else $ relay_ND
if (tp<p/2) u_relay=-d; end
if (tp>=p/2) u_relay=d; end
if((tp>=1.5*p/2) & (y>yref)) u_relay=-d; end
yref=yref_on;
end
if ((u_relay==-d) & (u_relay_b==d)) % when relay off
m=m+1l; p=tp; tref=t; toff_ref=t;
end
if ((u_relay==d) & (u_relay_b==-d)) % when relay on
ton_ref=t; yref_on=y; sumy=0.0;
end
end
for i=1:499%9 u(i)=u(i+l); end
u(500)=u_relay+dis;
um (k) =u_relay; tm(k)=t; ym(k)=y; yr(k)=yref;
[x,v]=g_relay_ NDI (x,u(500-n_delay) ,delt);
t=t+delt;
end
fprintf (' Pu=%5.2f y_ref=%5.2f \n’,p, yref) ;
figure (1) ; plot (tm, ym, tm,um, tm, yr) ;

g_relay_NDl.m
function [x,y]l=g_relay_NDI (x,u_delay,delt)
A=[0-1;1-2];B=[1;01];C=[01];
x=x+ (A*x+B*u_delay) *delt;
y=C*x;
return

command window
>>relay_ NDI
Pu=3.32 y_ref=-0.51

360 Process Identification and PID Control

1= — T — T — =
L O y(t)
u(t)
05 ———— Yrei(£)
0k} —e 4
-05| -__"'_'____;_ === F -1l
o A i !
1 L 1 4 4 L 4 1 L]
1 1 1 1 1 1
0 5 10 15 20 25 30 35

Figure 12.13 Simulation results in Example 12.5.

Example 12.7
Estimate the ultimate frequency data of the linear dynamic subsystem (12.7) and the output
nonlinear static function (12.8) using Relay_ND for the following Wiener process:

w(t) = u(t)+0.15 (12.6)

z(s)) = exp(—0.5s)
W) = =T (127)
() =1—(1+z(¢)/3.0)exp(— 3.0z(¢)) (12.8)

The process output is contaminated by uniformly distributed random noise between —0.05
and 0.05.

Solution The activated process output by Relay_ND is shown in Figure 12.15 and the
MATLAB code is shown in Table 12.7.

The estimate for the ultimate period is close to the true value of 3.27 even under the
circumstance of the static disturbance and output nonlinearity. Now, let us estimate the output
nonlinear static function. The relay output is known to be approximately u(f) = (4dd/m)sin(w?).
Here, w is the relay frequency. Then, z(f) in the cyclic steady state is approximately
z(t) = 0.15G(0) — (4d/m)|G(iw)Isin(wt). Let us parameterize the model for the output nonlinear
function in the form z(¢) = g,y +,y* +&;y° + -+ +&,)". Then, the normalized model
parameters of fk, k=1,2,...,n, can be obtained by solving the following optimization
problem using the least-squares method:

mm Z —0.15G(0) + (4d/m)|G(iw)|sin(wlx) + &1k + 82Y% + &3 + -+ +&aYi]

N ~ ~ D P ~ 2
. . 0.15G(0) Sk + &Y T &Vt + 8
“MZPWW /)G liw)] (4d/m) G i)

§ k=1

N
= H} Z sin(@t) +fo +f 1k +Fovi + i+ - i) (12.9)
=1

Relay Feedback Methods 361

Table 12.6 MATLAB code to simulate Example 12.6.

relay_ND2.m
clear;
t=0; tf=35.0; delt=0.01; n=round(tf/delt);
y=0; x=[0;0]; delay=0.5; n_delay=round (delay/delt) ;
u=zeros(1,500); u_relay=0; dis=-0.5; d=1.0;
yref=0.0; yref_on=0;
tref=0.0; toff_ref=0.0; ton_ref=0.0;
m=0; index=0; y_delta=0.2;
rand (’seed’,0); noise=(rand(1l,n)-0.5)*0.1;
s1=0; s2=0; s3=0; s4=0; s5=0;
for k=1:n
u_relay_b=u_relay; % one sampling before : u_relayb
tp=t-tref; toff=t-toff_ref; ton=t-ton_ref;
if (index==0)
u_relay=d; toff_ref=t; p=t; if (y>y_delta) index=1; end
else
if (m<2) % conventional relay
if ((y>yref) & (ton>p/4)) u_relay=-d; end
if ((y<yref) & (toff>p/4)) u_relay=d; end
else $ relay ND
if (tp<p/2) u_relay=-d; end
if (tp>=p/2) u_relay=d; end
if((tp>=1.5*p/2) & (y>yref)) u_relay=-d; end
if ((tp>=(p/2-p*0.1)) & (tp<(p/2)))
sl=sl+l; s2=s2+tp; s3=s3+tp"2;
s4=sd4+y; s5=s5+y*tp;
end
yref=yref_on;
end
if ((u_relay==-d) & (u_relay_b==d)) % when relay off
m=m+1; p=tp; tref=t; toff_ref=t;

end
if ((u_relay==d) & (u_relay_b==-d)) % when relay on
1f (m>=2)
theta=inv ([sl s2 ; s2 s3])*[s4;s5];
yref_on=theta (1) +theta (2)*p/2;
end
s1=0; s2=0; s3=0; s4=0; s5=0; ton_ref=t;
end
end

for i=1:499%9u(i)=u(i+l); end
u(500)=u_relay+dis;
um (k) =u_relay; tm(k)=t; ym(k)=y; yr(k)=yref;
[x,yol=g_relay ND2(x,u(500-n_delay),delt);
y=yo+noise (k); t=t+delt;
end
fprintf (' Pu=%5.2f y_ref=%5.2f \n’,p, yref);
figure (1) ; plot (tm, ym, tm,um, tm, yr) ;.

362 Process Identification and PID Control

Table 12.6 (Continued)

g_relay_ND2.m
function [x,y]=g_relay_ND2 (x,u_delay,delt)
A=[0-1;1-2];B=[1;01];C=[01];
x=x+ (A*x+B*u_delay) *delt;
y=C*x;
return

command window
>>relay_ND2
Pu= 3.28 y_ref=-0.49

0.5

oo
bnll
o

s
Hi=
5
i
|
)
=3

e

0.5—{\ A

|
I
HTY

I

H ' L. - - - -3 .r. 1 . .
ANAN , 17
of-LLad R AP JEEEYRINT R
ERR R R BEHE R

1 |t ‘\15 L i -j I_; HEH B

ost| 4 |¥ O (Y] (Y] OI¥] Y]

'r
I‘-
I
I
I
I
-
I
I
L
[

Figure 12.15 Activation by Relay_ND for a Wiener-type nonlinear process.

Relay Feedback Methods 363

Table 12.7 MATLAB code to simulate the case of a static disturbance plus measurement noise in
Example 12.7.

relay_ND3.m
clear;
t=0; tf=35.0; delt=0.01; n=round(tf/delt);
y=0; x=[0;0]; delay=0.5; n_delay=round (delay/delt);
u=zeros (1,500); u_relay=0; dis=0.15; d=1.0;
yref=0.0; yref_on=0;
tref=0.0; toff_ref=0.0; ton_ref=0.0;
m=0; index=0; y_delta=0.2;
rand (’seed’,0); noise=(rand(1l,n)-0.5)*0.1;
s1=0; s2=0; s3=0; s4=0; s5=0; j=0;
for k=1:n
u_relay_b=u_relay; % one sampling before : u_relayb
tp=t-tref; toff=t-toff_ref; ton=t-ton_ref;
if (index==0)
u_relay=d; toff_ref=t; p=t; if(y>y_delta) index=1; end
else
if (m<2) % conventional relay
if ((y>yref) & (ton>p/4)) u_relay=-d; end
if ((y<yref) & (toff>p/4)) u_relay=d; end
else $ relay_ND
if (m==10) j=j+1; data_y_u(j,1l:3)=[t yu_relay]; end
if (tp<p/2) u_relay=-d; end
if (tp>=p/2) u_relay=d; end
if ((tp>=1.5*p/2) & (y>yref)) u_relay=-d; end
if ((tp>=(p/2-p*0.1)) & (tp<(p/2)))
sl=sl+1l; s2=s2+tp; s3=s3+tp"2;
s4=s4+y; s5=s5+y*tp;
end
yref=yref_on;
end
if ((u_relay==-d) & (u_relay_b==d)) % when relay off
m=m+1l; p=tp; tref=t; toff_ref=t;
end
if((u_relay==d) & (u_relay_b==-d)) %$ when relay on
if (m>=2)
theta=inv ([sl s2 ; s2 s3])*[s4;s5];
yref_on=theta (1) +theta (2)*p/2;
end
s1=0; s2=0; s3=0; s4=0; s5=0; ton_ref=t;
end
end
for i=1:499%9 u(i)=u(i+l); end
u(500)=u_relay+dis;
um (k) =u_relay; tm(k)=t; ym(k)=y; yr(k)=yref;
[x,yol=g_relay ND3(x,u(500-n_delay),delt);
y=yo+noise (k); t=t+delt;
end

364 Process Identification and PID Control

Table 12.7 (Continued)

fprintf (' Pu=%5.2f y_ref=%5.2f \n’,p, yref);
figure (1) ; plot(tm, ym, tm, um, tm, yr) ;

g_relay_ND3.m
function [x,y]=g_relay_ND3(x,u_delay,delt)
A=[0-1;1-2];B=[1;01];C=[01];
x=x+ (A*x+B*u_delay) *delt;
z=C*x; y=1-(1+2/3.0) *exp (-3.0*z) ;
return

command window
>>relay_ND3
Pu=3.33y_ref=0.34

where the normalized model parameters f,,f,,---,f, correspond to —0.15G(0)/
(4d|G(iw)|/7), &,(4d|G(iw)|/7), ..., &,(4d|G(iw)|/m) respectively. If the normalized
model G, (s) is defined for the normalized process G(s)/(4dlG(iw)l/rt), then the ultimate
amplitude ratio is one and the model for the output nonlinear static function is
2(t) = fiyx +foyi +F3yi + - +f.y). Because the overall input-output relation of the
original process is the same as that of the normalized process, the model of |G,(iw)l =1 and
z(t) = f Wk + fzy% + f3yi + - —|—.)A‘nyz obtained is acceptable. The output nonlinear static
models of 2(¢) = 1.417y + 1.146y? — 0.020y" is obtained from (12.9). Figure 12.16 shows the
performances of the model. It is remarkable that the nonlinear process with the output
nonlinearity and static disturbance can be identified using only one relay test. The MATLAB
code to estimate the output nonlinear function is shown in Table 12.8. The code should be
executed after the code in Table 12.7 is executed, because it uses the activated process input and
output data generated by the code in Table 12.7.

process
weeveema- model

-0.6) 1 1 1 1 1 1
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

4

Figure 12.16 Identification results for the output nonlinear static function in Example 12.7.

Relay Feedback Methods 365

Table 12.8 MATLAB code to estimate the nonlinear function for the case of a ramp disturbance plus
measurement noise in Example 12.7.

relay_ND3_nonlinear.m
n=length (data_y_u); %data_y_u(:,1:3)=[t y u]
period=data_y_u(n,1l)-data_y_u(l,1); w=2*pi/period;
for i=1:n
matrix(i,l)=-1; matrix(i,2)=data_y_u(i,2);
matrix (i, 3)=data_y_u(i,2)"2; matrix(i,4)=data_y_u(i,2)"3;
matrix_y(i,1l)=sin(w* (i-1)*delt);
end $Estimate the inverse f of y=f (z)
coeff=inv(matrix’ *matrix) *matrix’ *matrix_y;
fprintf (fwu=%5.3f \n’,w) ;
fprintf (' £1=%5.3f, £2=%5.3f , £3=%5.3f\n’,coeff (2),coeff(3),coeff(4));
% comparison of the model and the process
ymax=max (data_y_u(:,2)); ymin=min (data_y_u(:,2));
s=complex (0,1) *w; giw=exp (-0.5*s) / (s+1)"2; normal=pi/ (4*abs (giw) *d) ;
for i=1:50
y=ymin+ (ymax-ymin) *i/50;
z=coeff (2) *y+coeff (3)*y"2+coeff (4)*y"3; Smodel
mz (i,1)=z/normal; my (i, 1)=y; $my=f (mz)
end
figure (3) ; z=min (mz) : ((max (mz)-min (mz))/50.0) :max (mz) ;
nn=length(z);
for i=1:nn
y(i)=1-(1+z(1)/3.0)*exp(=-3.0*z (1))
end
plot(z,y,’r’); hold on %$real nonlinear function plotting
plot(mz,my); $model nonlinear function plotting

command window
>>relay_ND3_nonlinear
wu=1.893
f1=1.417, £2=1.146 , £3=-0.020

12.3.1 Concluding Remarks

Relay_ND has been proposed to manipulate output nonlinearities and static disturbances.
It guarantees a symmetric relay output by setting the time-length of the lower value of the relay
to the half-period. Also, it rejects the effects of static disturbances and output nonlinearity by
changing the input reference value of the relay.

12.4 Relay Feedback Method for a Large Range of Operation

This section introduces the two-channel relay feedback method to guarantee a prespecified
phase angle of the model under a large range of operation, possibly larger than the magnitude of
the relay (Sung et al., 2006). Let us call it Relay_LO. It uses a conventional relay followed by
two channels, a proportional channel and an integrator plus relay channel. The phase angle can
be specified easily by adjusting the ratio of the two gains of the two channels. It removes the

366 Process Identification and PID Control

effects of static disturbances, meaning that one need not define the deviation variables initially,
which is very attractive from a practical point of view.

Itinitially raises the process output up to the reference value y,.r using the startup mode and it
uses the normal mode for the normal operation. The detailed algorithm is as follows:

u(£) =1 fory(t) <Yeer (12.10)
u(t) = —1 fory(t) > yrer (12.11)
s(t) = K, J; u (z) dr (12.12)
For the startup mode:
et (1) = 5(2) (12.13)
u(t) = Kpui (1) + ttres (1) (12.14)

For the normal mode:

ur (1) = 1 for s(1) <speg (1) (12.15)
wr(t) = — 1 fors(r) > seet(1) (12.16)
up(t) = Kpuy (1) (12.17)

ui(1) = Ky (1) (12.18)

u(t) = up(t) + ui (1) + e (2) (12.19)

Equations (12.10) —(12.11) and (12.15) — (12.16) are relay 1 and relay 2, respectively. K, in the
startup mode is to adjust the speed of the process input for the process output to reach up to y.s.
Note that u(?) in the normal mode is composed of the two channels

Ch.1: yer — () — Relay 1 — u; (1) — up (1)
and
Ch.2: yer — y(2) — Relay 1 — u; (¢) — Integrator — s¢(2) — s(¢) — Relay 2 — up (1) — (1)

Sref(?) and u((?) are updated each half-cycle of u;(?) and each cycle of u,(?) respectively by
the following update algorithms:

Smax,k T Smin k
S 1(7) = Sk Snink

and

a(Kp + Ki)(Pon,k - Poff,k)
Pon,k + Poff,k

uref,k+l(l) = uref.k(l) +

Relay Feedback Methods 367

with the initial value of v (1) = (Smax.1 + Smin1)/2 fork=1,2,3, Here, k denotes the kth
cycle of u1(2). Smax x and Spin « are the maximum value and the minimum value of s(¢) during the
kthcycle. P, . and P 4 denote the time-lengths corresponding to the relay on and the relay off
respectively of relay 1.

The update rule of u,r makes the process input symmetric (equivalently, the time-average
value of the process input is zero) to reject the effects of static disturbances.

(Kp + Ki)(Pon,k - Poff,k)
Pon,k +Poff,k

is the time-average value of the process input of the kth cycle. Then, the update rule can
be derived:

a(Kp + Ki)(Pon,k - Poff,k)
Pon7k +P0ff,k

uref,k+1(t) = uref,k(t) +

a=1.5-2.0 is recommended with a compromise between the convergence rate and the
robustness. A larger « increases the convergence rate while it decreases the robustness. The
update of Srer i + 1() = (Smaxk + Sminx)/2 1 to make u,(f) symmetric.

The describing function for Ch. 1 is

The describing function for Ch. 2 is

4 —in 4
Ni(a) = Ki%exp 3 = —1Ki%

because the integrator of (12.12) shifts the phase as much as —7/2. Then, the overall describing
function of the two-channel relay feedback method is (12.20).

4 4 4 .
N(a) = Kpa —]Kia = E(Kp —lKi> (1220)

where a is the peak value of the process output. Then, the identified frequency response model
is (12.21) and (12.22):

. _ 1 . na(K +iKi)
Gliw) = — N - W (12.21)
/G(iw) = — m+ arctan (%) (12.22)

368 Process Identification and PID Control

Figure 12.17 Process activation by the two-channel relay feedback method in Example 12.8.

From (12.22), it is clear that the phase angle of the model /G(iw) can be set by adjusting the
ratio of Ki/K,.

Example 12.8
Simulate the two-channel relay for the following process. The step input disturbance of 1.0
enter at £ =30.0.

exp(—0.5s)

G(s) =2.0 G117

(12.23)

Solution The activated process output is shown in Figure 12.17 for the case of K, = 1.5,
K;=0.5and K; = 1.0. The MATLAB code to simulate Figure 12.17 and Example 12.8 is shown
in Table 12.9.

Table 12.9 MATLAB code to simulate the two-channel relay in Example 12.8.

relay_LD_exl.m
clear; tf=60.0; delt=0.01; tf_k=round(tf/delt);
relayl=0.0; relay2=0.0; relay2b=0.0; u=zeros(1,500);
uu=0.0; x=zeros(2,1); y=0.0; yb=0.0;
sum=0.0; sumb=0.0; sumref=0.0;
sum_min=0.0; sum_max=0.0; y_max=-10710; y_min=10"10;
number=0; yref=10.0; uref=0.0;
kp=1.5; ki=0.5; ks=1.0;
umax=100.0; umin=-100.0; index=0; y_delta=0.2;
for k=1:tf_k

Relay Feedback Methods

369

Table 12.9 (Continued)

t=(k-1)*delt; T(k)=t; Y (k)=y; U(k)=uu;
Up (k)=relayl; Ui (k)=relay2; Uref (k)=uref;
Sum (k) =sum; Sum_ref (k)=sumref;
for i=1:499%9 u(i)=u(i+l); end
if (index==0) %before relay feedback
relayl=1.0;
if (y>y_delta)
index=1; t_off=t; t_on=0.0; Pon=t;
Poff=0; Period=2*Pon; w=2*pi/Period;
end
else
1if (y-yref>=0.0 & yb-yref<0.0)
sum_max=sum; a_max=y_max; y_max=-10.0"10;
t_off=t; Pon=t-t_on; P=Pon+Poff; w=2*pi/P;
number=number+1;
if (number==2) uref=(sum_max+sum_min) /2; end
if (number>=2)
uref=uref+1.5* (kp+ki) * (Pon-Poff) /P;
end
if (number>=2) sumref=(sum_max+sum_min) /2; end
end
if (y>yref) relayl=-1; if (y>y_max) y_max=y; end; end
if (y-yref<=0.0 & yb-yref>0.0)
sum_min=sum; a_min=y_min; y_min=10.0"10;
if (number>=3) sumref=(sum_max+sum_min) /2; end
t_on=t; Poff=t-t_off;
end
if (y<=yref) relayl=1l; if(y<y_min) y_min=y; end; end
sum=sumb+ks*relayl*delt;
if (sum>umax) sum=umax; end % saturation
if (sum<umin) sum=umin; end
if (sum<=umax & sum>=umin) sumb=sum; end
if (number<?2)
uref=sum; $relay2=0;
else
if (sum>=sumref) relay2=ki; end
if (sum<sumref) relay2=-ki; end
end
end
1f(t>30) dis=1.0; else dis=0.0; end
uu=kp*relayl+relay2+uref; u(500)=uu+dis; yb=y;
[x,v]=g_relay_ LD_exl(x,delt,u);
end
a=(a_max-a_min) /2; giw=-pi*a* (kp+tcomplex (0,1)*ki)/ (kp~2+ki~2)/4;
fprintf (' w=%5.3f, giw=(%5.3f)+1(%5.3f) \n’,w, real (giw),imag(giw)) ;
figure (1) ; plot(T,Y,’b’",T,Up,’'g’,T,Ui,'r", T,Uref,’c’,T,Sun,’'k’, T,
Sum_ref,’'vy’);

square signal
square signal

o
©
o
©

370 Process Identification and PID Control

Table 12.9 (Continued)

g_relay_LD_exl.m

function [next_x,yl=g_relay_LD_exl (x,delt,u);
subdelt=delt/10; n=round (delt/subdelt) ;
A=[0-1;1-21;B=[2;01;
C=[01]; delay=0.5; delay_k=round (delay/delt) ;
for i=1:n

dx=A*x+B*u (500-delay_Xk) ;

x=x+dx*subdelt;
end
next_x=x; y=C*x;
return

command window
>>relay_LD_exl
w=1.555, giw=(-0.565)+1(-0.188)

Even though the reference value y..;= 10 is bigger than the process input corresponding to
the relay magnitude, the two-channel relay feedback method works properly due to the startup
mode. Also, it rejects the effects of the static disturbance effectively. The identified frequency
data is close to the real data of G(il.555)=—0.546 —i0.209 and the phase angle arctan
2(—0.188, —0.565) of the identified frequency model is the same as the prespecified value of
—T + arctan(Ki/Kp).

12.4.1 Concluding Remarks

Relay_LO can incorporate a large range of operation using the startup mode. The phase angle
of the model can be prespecified by adjusting the ratio Ki/K},. The effects of static disturbances
can be rejected by updating ().

Problems

12.1 Find all the processes to which the unbiased-relay feedback method can be applied.

@ G(s)=1/(10s+1)

(b) G(s)=1/(10s+1)(s+1)

(© G(s)=(=55+1)/(10s+1)(s+1)

(d) G(s) =exp(—0.05s5)/(10s+1)

() G(s) =2.0exp(—0.15)/(3s—1)(s+ 1).

12.2 Activate the process G(s)=1/(s + 1)° using the unbiased-relay and the biased-relay
feedback methods. Estimate the frequency response using the describing function
analysis in Chapter 8.

12.3 Activate the process G(s) = 1/(s + 1)° of which the output is corrupted by uniformly
distributed measurement noise between —0.05 and 0.05 using the unbiased-relay and the

Relay Feedback Methods 371

biased-relay feedback methods. Estimate the frequency response using the describing
function analysis in Chapter 8.

12.4 Activate the process G(s) = 1/(s + 1) that has a step input disturbance of 0.3 from the
beginning using the unbiased-relay feedback method combined with static disturbance
rejection technique in Section 12.2. Estimate the frequency response using the describing
function analysis in Chapter 8.

12.5 Activate the process G(s) = 1/(s + 1)5 at y(¢) = 0.5 using the unbiased-relay feedback
method combined with static disturbance rejection technique in the Section 12.2.
Estimate the frequency response using the describing function analysis in Chapter 8.

12.6 Activate the following process of using Relay_ND in Section 12.3 and estimate the
frequency response using the describing function analysis in Chapter 8. The process has a
static disturbance.

d'y() |, &y() &y | dy(0) du(t—0.1)
a7 e toae Ty +y(l)——O.IT+u(t—O.1)+d(1)
&y(1) d?y(2) dy(1)
= — I/ _ _ _ f
e |, d |, dr | y(0)=0, u(t)=0 fort<0,

d(t)=0.5 fort>0

12.7 Activate the following Wiener-type nonlinear process with a step input disturbance using
Relay-ND in Section 12.3 and estimate the ultimate frequency response of the linear
dynamic subsystem and the output nonlinear static function:

w(t) =u()+1.0

d*z(1) d&z(1) d?z(1) dz(r)
dr 4 ds 6 de? 4 dt

y(t) =1 —(1+2z(t))exp(—2z(1))

1dw(t—O.l)

+z(t)= -0 %

+w(t—0.1)

12.8 Activate the process in Problem 12.6 at y.y=0.5 using the two-channel relay in
Section 12.4 to estimate the frequency responses for the phase angles —n/2, —3m/4, —m.

12.9 Activate the virtual process of Process 3 (refer to the Appendix for details) using the
following relays and estimate the frequency responses. Also, tune the PID controller
using the ZN or IMC tuning rule and show the control performance.

(a) Unbiased relay, y..r=0.0; phase angle, —m.

(b) Biased relay, y.r=0.3; phase angle is not specified.

(¢) Unbiased relay combined with disturbance rejection technique, y..;=0.3; phase
angle, —T.

(d) Relay_ND, y,.s=0.3; phase angle, —m.

(e) Two-channel relay, y..r=0.3; phase angle, —3m/4.

Here, the Fourier analysis or the modified Fourier transform should be used for (b) because the
oscillation is asymmetric.

372 Process Identification and PID Control

References

/O\strbm, K.J. and Hégglund, T. (1984) Automatic tuning of simple regulators with specifications on phase and
amplitude margins. Automatica, 20, 645.

Park, J.H., Sung, S.W. and Lee, I. (1997) Improved relay auto-tuning with static load disturbance. Automatica, 33, 711.

Shen, S., Wu, J. and Yu, C. (1996a) Use of biased-relay feedback for system identification. AICHE Journal, 42, 1174.

Shen, S., Wu, J. and Yu, C. (1996b) Autotune identification under load disturbance. Industrial & Engineering
Chemistry Research, 35, 1642.

Sung, S.W. and Lee, J. (2006) Relay feedback method under nonlinearity and static disturbance conditions. Industrial
& Engineering Chemistry Research, 45, 4028.

Sung, S.W., Lee, J., Lee, D.H. et al. (2006) A two-channel relay feedback method under static disturbances. Industrial
& Engineering Chemistry Research, 45, 4071.

13

Modifications of Relay Feedback
Methods

13.1 Process Activation Method Using Pulse Signals'

This section introduces a closed-loop process activation method to reduce the harmonics and
obtain more accurate frequency-response data of the process. It can also successfully remove
the effect of the input nonlinearity by using the disturbance rejection technique. The method
combines 10 pulses to generate one period of the relay signal. The 10 pulses are combined in an
optimal way by solving a constrained nonlinear optimization problem to minimize the
harmonics. In the implementation, the closed-loop process activation method uses the optimal
solution obtained without continuing to solve the optimization problem any more. So, the
implementation of the proposed method is almost as simple as that of the previous methods. Let
us call it Relay_PS.

The signal generated by Relay_PS (Je et al., 2009) has five pulses in the half-period, as
shown in Figure 13.1. The first cycle is activated by the conventional relay feedback method.
First, the relay output (equivalently, process input) u(¢) = ad is entered until the process output
y(?) deviates from the initial value. After that, one cycle is determined as follows: u(?) = —ad
when y(#) > 0 and u(t) = ad when y(¢) < 0. Here, d is the magnitude of the multi-pulse signal
and « < 1 is introduced for a smooth transit from the conventional relay mode to the multi-pulse
mode without changing the fundamental frequency term, which will be explained later. The
multi-pulse signal of Relay_PS begins to enter after one cycle of the conventional relay signal,
as shown in Figure 13.1. The process input of the kth cycle in the multi-pulse mode is
determined as follows.

When y(7) <0, the following rules are applied, as shown in Figure 13.1:

u(t):da Ogt_ton,k<x(1)Ponﬁk—l (131)
u(t) =0, x(1)Pong—1 <t~ tonk <X(2)Ponk 1 (13.2)

! Enhanced process activation method to remove harmonics and input nonlinearity, Je et al. Journal of Process Control
Copyright ©[2008] Elsevier, Inc.

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

374 Process Identification and PID Control

1 -
1 relay output
rocess output
05 P P
o) PR ‘ :
05+
.
0 5 10 15

time

(@)

’ M4
Port on relay output
----- process output
,I"-_-\\\ ,/’—“\\
I,, \\\ /// \\\
7 N K4 \
N
~_x(4)
x (1 S~——F
Xx(2
()2(3)
1-x(4) A-x(1])
1-x(3)
WL L J 1—)((2) L L U U
time

(b)

Figure 13.1 Output signal of Relay_PS (a) and its cyclic-steady-state part when the period is unity
(b). Enhanced process activation method to remove harmonics and input nonlinearity, Je et al. Journal
of Process Control Copyright ©[2008] Elsevier, Inc.

u(l) =d, X(Z)Pon’kfl < t—tlonk <X(3)P0n’k,1 (13.3)
u(t) =0, x(3)Pon,k 1 St —Tonk <X(4)Pon,k—1 (13.4)

u(l) =d, x(4)Pon1k,1 <t —toni < (1 — x(4))Pon,k,1 (13.5)

Modifications of Relay Feedback Methods 375

u(t) =0, (1=x(4)Ponj—1 <1~ lfong <(1=x(3))Ponj 1 (13.6)
u(t) =d, (1=x(3))Ponk—1 <t~ tonje < (1= x(2))Pong—1 (13.7)
u(t) =0, (1 =x(2))Ponj—1 < 1= longe <(1 = x(1))Ponj—1 (13.8)

u(t)=d, (1=x(1))Pong—1 <1t~ tonk (13.9)

When y(7) > 0, the following rules are applied, as shown in Figure 13.1:

u(t) = —d, 0 <1t —torp <X(1)Posr—1 (13.10)

u(t) =0, x(1)Posrg—1 < t— tofrk <X(2)Poft i — 1 (13.11)

u(t) = —d, x(2)Posri—1 < 1—lofrk <X(3)Pofr -1 (13.12)

u(t) =0, x(3)Posrx—1 < t— otk <X(4)Pofrf —1 (13.13)

u(t) = —d, x(B)Poris 1 < 1= togrx < (1 — x(4))Pors -1 (13.14)

u(t) =0, (1 —=x(4))Poi—1 < t—torx < (1 —x(3))Pofrj—1 (13.15)
u(t) = —d, (1 =x(3))Potrs—1 < t—tofix < (1 —x(2))Porx—1 (13.16)
u(t) =0, (1 —=x(2))Poik—1 < t—torx < (1 —x(1))Pofrj—1 (13.17)
u(t)y= —d, (1=x(1))Potri—1 < t—lofrk (13.18)

where P, 1 and Py 1 denote the time-length of the half-cycle corresponding to the on
status and the off status respectivelyof the (k — 1)-th cyclein Relay_PS. #,, x and #,¢¢ x represent
the starting time of the on status and the off status in the kth cycle respectively. This procedure is
repeated until the time-length of the cycles converges.

The x values in (13.1)—(13.18) are determined in an optimal way by solving the constrained
nonlinear optimization problem (13.19)—(13.21) to minimize the harmonics. As in (13.19), 11
frequency terms are considered. Frequency terms higher than the 11th term will be negligible
because the process dynamics dissipate their effects. If one wants to consider more frequency
terms, then one can just replace 11 by a larger value, but it has no special meanings for the usual
processes.

min li (i—’l’ﬂ (13.19)

376 Process Identification and PID Control

9 (T 2 [x(1)1 x(3)m
b, = —J u(t)sin(nt) dt = = J sin(nt) dt + J sin(nt) dt
TJo n x(2)m
T — x(4)n T
+ J sin(nt) J sin (nt) dr + J sin (nt) dt]
x(4)m —x(n—x(1)n
(13.20)

subject to

x(1)>0.05, x(2)—x(1)>0.05, x(3)—x(2)>0.05 x(4)—x(3)>005 x(4)<0.5
(13.21)

where u(?) is defined as the combination of the 10 pulse signals, as shown in Figure 13.1, and
d = 1is assumed without loss of generality. The process input of the cyclic steady state can be
represented by the Fourier series u(f) =" | b,sin(nt) assuming that the period is 21
without loss of generality. The cosine series are not considered because u(?) is an odd
function.

The inequality constraints of (13.21) are needed to incorporate practical problems of the
actuator. If the width of the pulse signal is chosen as too small a value with the intention to
reduce the harmonics sufficiently, then the actuator cannot realize the abrupt change of the
signal. For example, the width of the pulse can be constrained to be larger than 5% of the half-
period. The setting is just an example. If the dynamics of the actuator are faster, then a smaller
value than 0.05 can be chosen, and vice versa.

The optimal solutions of x(1) = 0.0500, x(2) =0.1454, x(3) =0.2114 and x(4) = 0.2614 are
obtained by the fmincon function in the optimization toolbox of MATLAB. The MATLAB
code for the optimization is shown in Table 13.1.

The fundamental frequency term of the optimal solution is b; = 1.0232d. Table 13.2 shows
the harmonics of Relay_PS and the conventional relay feedback method. Relay_PS shows
significantly smaller harmonics. It should also be noted that the frequent switching during one
period does not produce any big high-frequency harmonics, as shown in Table 13.2, because
they are included in the optimization step. The harmonics of an extremely high frequency can
be negligible because the process dynamics exponentially reduce the magnitude. The
simulation study in the next section will demonstrate that there are no problems related to
the frequent switching.

Because the fundamental frequency term of the conventional relay is 4d/m and that of
Relay_PS is 1.02324d, it is clear that the value of « in Figure 13.1 should be 1.0232m/4 for the
smooth transit from the conventional relay feedback mode to the multi-pulse mode of
Relay_PS without changing the fundamental frequency term.

It is possible to increase the number of pulse signals to reduce the harmonic terms further.
Also, the number of the pulse signals can be reduced or the inequality constraints of (13.21) can
be changed to lighten the load of the actuator due to the frequent switching. But this study
confines its approach to this point, since this kind of extension is straightforward.

It should be noted that the above-mentioned optimization problem is not solved further in
the implementation. The optimal solution obtained of x(1)=0.0500, x(2)=0.1454, x(3) =
0.2114 and x(4)=0.2614 is directly used in the implementation step. Therefore, the
implementation steps from (13.1) to (13.18) are quite simple and can be programmed in a
very cheap microprocessor.

Modifications of Relay Feedback Methods 377

Table 13.1 MATLAB code to solve the nonlinear optimization problem of (13.19)—(13.21).

optim.m
options = optimset (' Display’,’iter’,’TolFun’,1le-10,"TolX’,1e-10);
[x fval]=fmincon (@objective, [0.060.14 0.21 0.31, 1,01, [1,0(1,(1,11,
@mycon, options) ;

for i=1:11
h(i)=harmonics (i, x) ;
end
fprintf ((1)=%5.4f,x(2)=%5.4f,%x(3)=%5.4f,x(4)=%5.4f\n’ ,x (1),
x(2),%(3),x(4))
fprintf ("b=%5.4£,%5.4£,%5.4£,%5.4£,%5.4f£,%5.4£,%5.4£,%5.4£,%5.4f%,
%5.4f,%5.4f\n’ ,h)
mycon.m objective.m
function [c,ceq] =mycon (x) function [V]=objective (x)
c(l) =-x(1) +0.05; fori=1:11
c(2) =-x(2) +x(1) +0.05; h=harmonics (i, x);
c(3) =-x(3) +x(2) +0.05; coeff (i)=h;
c(4) =-x(4) +x(3) +0.05; end
c(5) =x(4) -0.5; s=0.0;
ceq=[]; for i=2:11
return s=s+ (coeff (i) /coeff(l))"2;
end
V=s;
command window
>>optim

x(1)=0.0500,%x(2)=0.1454,x(3)=0.2114,x(4)=0.2614
b=1.0232, 0.0000, -0.0263, 0.0000, 0.0134, 0.0000, 0.0857, 0.0000,
0.0323, -0.0000, 0.0023

harmonics.m
function [h]=harmonics (n, x)
syms f t; f=sin(n*t);
=(2/pi)*(int (£, t’,0,x (1) *pi)+int(f,’'t’,x(2)*pi,x(3) *pi)+int (£, " t’,
x(4)*pi, (1-x(4)) *pi)+int(£,’t", (1-x(3)) *pi, (1-x(2)) *pi)+int (£, t’,
(1-x (1)) *pi,pi));
h=double (g) ;

The following equations can be derived by neglecting the harmonic terms to estimate the
ultimate information of the process from the relay feedback test using describing function
analysis:

21
w=— 13.22
0= (13.22)
b
kcu_; (13.23)

where a and P are the peak value of the process output and the period in the cyclic steady state
respectively. w, and k., respectively represent the ultimate frequency and the ultimate gain

378 Process Identification and PID Control

Table 13.2 Harmonics of Relay_PS and the conventional relay feedback method. Enhanced process
activation method to remove harmonics and input nonlinearity, Je et al. Journal of Process Control
Copyright ©[2008] Elsevier, Inc.

Relay_PS (b, =1.02324d)

Conventional method (b; = 4d/m)

b,/d=10.0000 by/by =0.0000 b,/d=0.0000 b,/b; =0.0000
bsld=—0.0263 bs/by = —0.0257 bsld = 4m/3 bs/b; =0.3333
b./d = 0.0000 bal/b, =0.0000 b4/d = 0.0000 ba/b; =0.0000
bs/d=0.0134 bs/by =0.0131 bsld = 4m/5 bs/b; =0.2000
be/d=10.0000 be/by =0.0000 be/d=10.0000 be/b; =0.0000
bold=0.0857 b/b, =0.0838 bold=4m/7 bolby =0.1429
bg/d=10.0000 bg/b, =0.0000 bg/d=0.0000 bs/b; =0.0000
bold=0.0323 bo/by =0.0316 bold = 4m/9 bo/by =0.1111
byold=0.0000 b1o/by = 0.0000 byo/d=0.0000 b1o/by = 0.0000
b11/d200023 bll/bl 200022 b“/d:41'c/11 b“/bl :00909

obtained from Relay_PS test. This describing analysis method is one example to estimate the
frequency-response data set from the process data activated by Relay_PS. If Relay_PS is
combined with the disturbance rejection techniques and/or other efficient algorithms, such as
Fourier analysis and the modified Fourier transform, it is possible to estimate more accurate
frequency-response data sets and to obtain many more frequency-response data sets.

The application of Relay_PS to nonlinear system identification will be exemplified in the
subsequent two sections.

13.1.1 Comparisons with Previous Approaches

There are the four previous approaches developed to reduce harmonics. They use a multistep
signal, saturation-relay signal, sinusoidal signal or preload relay signal (Lee et al., 1995;
Sung et al., 1995; Shen et al., 1996; Tan et al., 2006). Meanwhile, Relay_PS uses pulse
signals. This is a remarkable advantage of Relay_PS, because it can reject the effects of the
input nonlinearity. For example, consider the Hammerstein process of Figure 13.2. If
Relay_PS is applied in combination with the previous strategies to reject static disturbances,
then the intermediate signal v(#) becomes a symmetric binary signal for which a unit
magnitude can be assumed without loss of generality. Then, it is straightforward to obtain the
ultimate data of the linear dynamic subsystem. Refer to Sung and Lee 2006 and Park
et al. 2006 for detailed descriptions, which use a similar principle to identify Hammerstein,
Wiener or Hammerstein—Wiener processes. A simple system identification example is given
in the next section.

u(t) Vi)

— f(u(t) linear dynamic | ¥(t)

subsystem

Figure 13.2 Hammerstein-type nonlinear process. Enhanced process activation method to remove
harmonics and input nonlinearity, Je et al. Journal of Process Control Copyright ©[2008] Elsevier, Inc.

Modifications of Relay Feedback Methods 379

13.1.2 Case Study

Two kinds of simulations were performed. One compares Relay_PS with the conventional
relay feedback method. The other demonstrates how the proposed method can be applied to
identify the Hammerstein process.

Example 13.1

Several processes are simulated to demonstrate the performances of Relay PS and the
conventional relay feedback method. Tables 13.3—13.5 compares Relay_PS with the conven-
tional relay feedback method for the nth order processes of Gy(s)=exp(—0s)/(s + 1)",
n=1,2,3. Table 13.6 shows the estimation results for the minimum-phase-zero process of
Gy(s)=(1 + 0.35) exp(—0s)/(s + 1)2 and the nonminimum-phase-zero process of Gpy(s)=
(1 —0.3s)exp(—06s)/(s + 1)>. Table 13.7 indicates the simulation results for the underdamped
processes of Gy(s) = exp(—0. Ls)/(s* + 2&s + 1), £=0.3,0.5,0.7. For all the cases, Relay_PS
provides better estimates than the conventional relay feedback method because it removes the
harmonics effectively.

Table 13.3 Simulation results for G,(s) = e %is + 1).

0 lan wy

Proposed Conventional Process Proposed Conventional Process
0.1 15.0308 13.3722 16.3505 16.3244 16.4481 16.2000
0.5 3.6160 3.2338 3.8069 3.6787 3.7760 3.6733
1.0 2.1667 2.0134 2.2617 2.0249 2.1085 2.0288
5.0 1.0724 1.2818 1.1321 0.5265 0.5521 0.5307

Table 13.4 Simulation results for G,(s) = e %is + 1)

0 Keu Wy

Proposed Conventional Process Proposed Conventional Process
0.1 20.5552 18.8890 20.6710 44373 4.2056 44351
0.5 4.6923 4.4239 4.6879 1.9203 1.8982 1.9204
1.0 2.7057 2.5522 2.7069 1.3046 1.3156 1.3065
5.0 1.1611 1.2980 1.2087 0.4588 0.4710 0.4569

Table 13.5 Simulation results for G,(s) = e PIs + 13

0 Keu Wy

Proposed Conventional Process Proposed Conventional Process
0.1 6.1941 6.0025 6.2164 1.5392 1.5191 1.5430
0.5 3.5422 3.4286 3.5436 1.1544 1.1428 1.1508
1.0 2.4944 2.4146 2.4951 0.9156 0.9189 0.9163

5.0 1.2446 1.1356 1.2494 0.3982 0.4099 0.4000

380 Process Identification and PID Control

Table 13.6 Simulation results for G,(s) = (1 + as)e /(s + 1)°.

o kcu Wy
Proposed Conventional Process Proposed Conventional Process
-0.3 1.7779 1.7357 1.7792 3.6761 3.3854 3.6750
0.3 4.5399 4.4248 4.5716 12.0737 10.5146 12.9023
Table 13.7 Simulation results for G(s) =e 15?4+ 265 + 1).
é kcu Wy,
Proposed Conventional Process Proposed Conventional Process
0.3 5.8628 5.2845 6.0692 2.5857 2.4448 2.6196
0.5 9.8006 8.8919 10.1796 3.2057 3.0354 3.2623
0.7 13.8366 12.4866 14.3399 3.7069 3.5102 3.7848

Table 13.8 shows the MATLAB code to simulate Tables 13.3-13.5.

Table 13.8 MATLAB code to simulate Tables 13.3-13.5.

relay_PS_exl.m
clear; delt=0.001; tf=30; n=round (tf/delt);
x=zeros (3,1); $Stable 13.5
$x=zeros (2,1); Stable 13.4
$x=zeros(1l,1); $Stable 13.3
u_data=zeros (1,1001);
t_on=0.0; t_off=0.0; P_on=0; P_off=0;
ymin=0.0; ymax=0.0; np=0; y=0.0;
index=0.0; y_delta=0.2;
for i=1:n
t=i*delt; yy(i)=y; tt(i)=t;
if (index==0) u=0.8036; if (y>y_delta) index=1; end; end
if (index==1)
if(yy(1i)>0.0 & yy(i-1)<=0.0)
P_on=t-t_on; t_off=t;
ymax_f=ymax; ymax=0.0; end
if(yy(1i)<=0.0 & yy(i-1)>0.0)
P_off=t-t_off; t_on=t; np=np+1;
ymin_f=ymin; ymin=0.0; end;
end
if (np<=1 & index==1)
if(y>0.0) u=-0.8036; end
if(y<=0.0) u=0.8036; end; end
if (np>1)
if (y<0.0)
if (y<ymin) ymin=y; end;
if(t-t_on<0.05*P_on) u=1;
elseif (t-t_on<0.1454*P_on) u=0;
elseif (t-t_on<0.2114*P_on) u=1l;

Modifications of Relay Feedback Methods

381

Table 13.8 (Continued)

elseif
elseif
elseif
elseif

t-t_on<0.2614*P_on) u=0;
t-t_on<0.7386*P_on) u=1
t-t_on<0.7886*P_on) u=0;
t-t_on<0.8546*P_on) u=1l;

’

elseif (t-t_on<0.95*P_on) u=0;
elseif (0.95*P_on<t-t_on) u=1l;
end
end
if(y>=0.0)

if (y>ymax) ymax=y; end;
1f(t-t_off<0.05*P_off) u=-1;

elseif (t-t_off<0.
t-t_off<0.
t-t_off<0.

elseif
elseif
elseif (t-t_off<0

.7386*P_off

1454*p_off
2114*p_off

u=0;
u=-1;

u=-1;

)

)
2614*pP_off) u=0;

)

)

(
(
(
elseif (t-t_off<0.7886*P_off) u=0;
elseif (t-t_off<0.8546*P_off) u=-1;
elseif (t-t_off<0.95*P_off) u=0;
elseif (0.95*P_off<t-t_off) u=-1;
end
end
end
for j=1:1000 u_data(j)=u_data(j+1); end
uu (i)=u; u_data(1001)=u;
[x,y]=process_pwml (x,delt,u_data);
end
P=P_on+P_off; a=(ymax_f-ymin_f)/2; w_u=2*pi/P
AR u=a/1.0232; k_cu=1/AR_u;
fprintf (' kcu=%5.3f, wu=%5.3f\n’,k_cu,w_u);
figure (1) ; plot (tt,uu, tt,yy);

g_relay_ PS_exl.m

function [next_x,yl=g_relay_PS_exl(x,delt,u);
subdelt=delt/10; n=round (delt/subdelt) ;
$table 13.3
%$A=-1; B=1; C=1; delay=0.1;
$table 13.4
$A=[0-1;1-2]; B=[1; 0]; C=[01]; delay=0.1;
$table 13.5
A=[00-1;10-3;01-3];
B=[1; 0; 0]; C=[001]; delay=0.1;
delay_k=round (delay/delt) ;
for i=1:n

dx=A*x+B*u (1000-delay_Xk) ;

x=xtdx*subdelt;
end
next_x=x; y=C*x;
return

command window
>>relay_ PS_exl
kcu=6.189, wu=1.542

382 Process Identification and PID Control

Example 13.2
The following Hammerstein process is simulated to demonstrate the additional advantage of
Relay_PS compared with the previous approaches developed to reduce harmonics.
v(f) = 1 —exp(—0.3u(?)) (13.24)
—0.5
Y5 _ exp(=03s) ZS) (13.25)
v(s) (s+1)

Equation (13.24) is the input nonlinearity and (13.25) is the linear dynamic subsystem. The
intermediate signal v(¢) is not measurable.

1.5

uy

time

(a)

0.4

0.2 H [|

time

(b)

Figure 13.3 Estimation performances of the proposed method for the Hammerstein process: activated
process signals (a) and (b); equivalent Hammerstein process (c); modeling result for the input nonlinearity
(d). Enhanced process activation method to remove harmonics and input nonlinearity, Je et al. Journal of
Process Control Copyright © [2008] Elsevier, Inc.

Modifications of Relay Feedback Methods 383

L0 gy PO e [

0.6

0.4+

0.2}

process

Figure 13.3 (Continued)

Figure 13.3 shows the activated process signals by Relay_PS combined with the disturbance
rejection method (Park et al., 1997). The MATLAB code to simulate Figure 13.3a and b is
shown in Table 13.9. The upper value of the process input has been updated by the following
equation, as shown in Figure 13.3a:

Amax.k —1 + Amink — 1 > (13 26)

Umax i = Umaxk—1— 2
max, 'max <|amax,k 1]+ |Gming — 1]

where dyax k1 and a4 are the (kK — 1)-th peak value and the (k — 1)-th valley value of the
process output. Uy, « 18 the kth upper value of the process input. The update rule (13.26) is just
an example. A tuning parameter can be included to compromise between the convergence rate
and the robustness. For detailed descriptions on the update rule, refer to Chapter 12.

Note that the update (13.26) results in a symmetric v(¢) signal, as shown in Figure 13.3b.
Then, it can be assumed that the upper value and the lower value of v(¢) are + 1 and —1
respectively, without loss of generality, because there is one degree of freedom to adjust 3, as
shown in Figure 13.3c. Then, the ultimate data (w,=1.921 (actual: 1.920) and k,=5.828
(actual: 4.686)) of the dynamic subsystem G(s) is obtained from the cyclic-steady-state input
and output data in Figure 13.3a. Also, the model (1) = 0.876u(r) — 0.124u(1)* from 0 = B0),
1 =Bf(1.433) and —1 = Bf(—1.000) is obtained. Here, ¥(¢) corresponds to Bv(t). Figure 13.3d
compares the model #(z)/8 = (0.876u(t)) — 0.124u(r)*)/B obtained and the actual input
nonlinear function of v(f) = 1 — exp(—0.3u(?)). Here, 8 =2.863 is used, estimated by 1/v,x.
It confirms that Relay_PS can successfully identify the Hammerstein process. The previous
approaches cannot be applied to this kind of application.

384 Process Identification and PID Control

Table 13.10 shows the MATLAB code to estimate the nonlinear model from the process
input and output activated by Relay_PS. It should be executed after the code of Table 13.9 is
executed because it uses the data obtained by the code of Table 13.9.

13.1.3 Concluding Remarks

A new closed-loop process activation method was introduced to provide more accurate
ultimate data estimates by reducing the harmonics as well as the effect of the input nonlinearity.
It minimizes the harmonics by combining the ten pulse signals in an optimal way by solving
the constrained nonlinear optimization problem. The implementation is quite simple, so
that a very cheap microprocessor is enough to realize the proposed algorithm. Simulation
examples demonstrate that Relay_PS can remove the harmonics and the input nonlinearity
simultaneously.

Table 13.9 MATLAB code to simulate Figure 13.3a and b.

relay_PS_ex2.m
clear; delt=0.002; tf=30; x=[0;0]; n=round(tf/delt); u_data=zeros
(1,1001);
v=0.0; y=0.0; t_on=0.0; t_off=0.0; P_on=0; P_off=0;
ymin=0.0;ymax=0.0;np=0; umax=1.0; umin=-1.0; index=0.0; y_delta=0.1;
for i=1:n
t=i*delt; yy(i)=y; tt(i)=t;
if (index==0) u=0.8036; if (y>y_delta) index=1; end; end
if (index==1)
if(yy(1)>0.0 & yy(i-1)<=0.0)
P_on=t-t_on; t_off=t; ymin_f=ymin; ymax=0.0;
1if (v>0) vmax=v; else vmin=v; end
end
1if(yy(1)<=0.0 & yy(i-1)>0.0)
P_off=t-t_off; t_on=t; ymin=0.0; np=np+l; ymax_f=ymax;
if (v>0) vmax=v; else vmin=v; end
if (np>=2)
umax=umax-2.0%* ((ymax_f+ymin_f) / (abs (ymax_f)+abs (ymin_£f)));
end
end
end
if (np<=1 & index==1)
1if(y>0.0) u=-0.8036; else u=0.8036; end;
end
if (y<0.0)
if (y<ymin) ymin=y; end
else
if (y>ymax) ymax=y; end
end
if (np>1)
if (y<0.0)
if (y<ymin) ymin=y; end
if(t-t_on<0.05*P_on) u=umax;

Modifications of Relay Feedback Methods 385

Table 13.9 (Continued)

elseif
elseif

t-t_on<0.1454*P_on) u=0; elseif (t-t_on<0.2114*P_on) u=umax;

(
(t-t_on<0.2614*P_on) u=0; elseif (t-t_on<0.7386*P_on) u=umax;
(
(

elseif (t-t_on<0.7886*P_on) u=0; elseif (t-t_on<0.8546*P_on) u=umax;
elseif (t-t_on<0.95*P_on) u=0; elseif (0.95*P_on<t-t_on) u=umax;
end

end

if(y>=0.0)

if (y>ymax) ymax=y; end
if(t-t_off<0.05*P_off) u=-1;
elseif (t-t_off<0.1454*P _off)u=0;elseif (t-t_off<0.2114*P_off)
u=umin;
elseif (t-t_off<0.2614*P_off)u=0; elseif (t-t_off<0.7386*P_off)
u=umin;
elseif (t-t_off<0.7886*P_off)u=0; elseif (t-t_off<0.8546*P_off)
u=umin;
elseif (t—-t_off<0.95*P_off)u=0;elseif (0.95*P_off<t-t_off)u=umin;
end
end
end
for §=1:1000 u_data(j)=u_data(j+1); end
vv(i)=v;uu(i)=u;u_data(1001l)=u; [x,y,Vv]=g_relay_ PS_ex2(x,delt,
u_data);
end
P=P_on+P_off; a=(ymax_f-ymin_f)/2; wu=2*pi/P; beta=1/vmax; kcu=4/
(a*pi*beta) ;
fprintf (' umax=%5.3f umin=%5.3f vmax=%5.3f vmin=%5.3f\n’, umax, umin,
vmax,vmin) ;
fprintf ('beta=%5.3f a=%5.3f wu=%5.3f kcu=%5.3f\n’ ,beta, a, wu, kcu) ;
figure (1) ; plot(tt,uu, tt,yy,’ ") figure(2); plot(tt,vv);

g_relay_PS_ex2.m
function [next_x,y,v]=g_relay_PS_ex2(x,delt,u);
subdelt=delt/10;
n=round (delt/subdelt) ;
A=[0-1; 1-2]1; B=[1; 0];
C=[01]; delay=0.5;
delay_k=round (delay/delt) ;
u_delay=u(1001l-delay_k);
v=1l-exp (-0.3*u_delay);
for i=1:n
dx=A*x+B*Vv;
x=x+dx*subdelt;
end
next_x=x; y=C*x;
return

command window
>>relay_ PS_ex2
umax=1.432 umin=-1.000 vmax=0.349 vmin=-0.350
beta=2.863 a=0.076 wu=1.919 kcu=5.828

386 Process Identification and PID Control

Table 13.10 MATLAB code to estimate the nonlinear function.

relay_PS_ex2_nonlinear.m

f=inv ([umax umax”™2; umin
umin”~2])*[1;-11;
fprintf (' £1=%5.3f £2=%5.3f\n’,£(1),£(2));
ui=-1.5; uf=2.0; delu=0.01;
n=round ((uf-ui) /delu) ;
clear um fm vm
for i=1l:n

um (i) =ui+i*delu;

fm(i)=1-exp(-0.3*um(i));
vm(i)=(f (1) *um(i)+£f(2) *um (i) *2) /beta;
end
figure (2); plot (um, fm,um,vm,’ : ")

command window
>>relay_PS_ex2_nonlinear
£f1=0.876 f2=-0.124

relay mode

Yret & u(t) y(t)

+,

1 Legd of

Uret

sinusoidal mode

Go(s)

---------- process input
oo

¥ process output

i E ————— reference Vo

15} il 1
- [P reference Uygf
R B , : ;
0 10 20 30 40

t
(b)

50

Figure 13.4 Schematic diagram of Relay_SS (a) and typical responses (b). Enhanced Frequency
Response Estimator to Guarantee Pre-specified Phase Angle and Static Disturbance Rejection with All
Harmonics Removed, Sung and Lee, Korean Journal of Chemical Engineering Copyright ©[2008]

Korean Institute of Chemical Engineers.

Modifications of Relay Feedback Methods 387

13.2 Process Activation Method Using Sine Signals®

This section introduces the process activation method using sine signals to remove the
harmonics of the process input completely, to guarantee the specified phase angle and to
reject the effects of disturbances (Sung and Lee, 2008). Also, the stability conditions of the
process activation method are discussed. Let us call it Relay_SS.

Figure 13.4 shows the schematic diagram and the typical response of Relay_SS.

Relay_SS uses one cycle of the conventional relay feedback signal followed by a sinusoidal
signal combined with a pulse signal. The role of the pulse signal is to enforce the process output
and the process input to converge to the complete sinusoidal signal. In Figure 13.4b, the first
several cycles of the incomplete sinusoidal signals converge to the complete sinusoidal signal
by the guidance of the pulse signals. Then, the important conclusion reached is that the process
input and the process output in the cyclic steady state include no harmonics. The reference u,.¢
for the process input is automatically updated to enforce the oscillation of the process input and
output to be symmetric by rejecting the effects of the static disturbance. In Figure 13.4b, the
reference value for the process output in the relay feedback method is y.f=0.5, which is
equivalent to introducing a static disturbance. Nevertheless, Relay_SS automatically raises the
process output up to the reference value of y,.; = 0.5 and provides the symmetric oscillation of
the complete sinusoidal signal by updating .

Consider the following steps to understand the working of the process activation method in
more detail. Step 1, obtain one cycle from ¢ = 0 to 7 = 10 using the conventional relay feedback
method. That is, u(f) = d when y(f) < Yyer, u(f) = —d when y(£) > Vyer, Where d, u(t), y(t) and y,¢
denote the magnitude of the relay, the process input, the process output and the reference value
of the relay feedback respectively. The role of Step 1 is to initialize the initial parameters of
the sinusoidal mode. Step 2, change from the relay feedback mode to the sinusoidal mode. In
the sinusoidal mode, Relay_SS determines the process input as follows.

When y(7) > y.r (negative input status):

4d

u(t) = — ?sin [0 (2 — togri) —] +threr if £ < £330 (13.27)

4d : off - ¢ expected expected
u(t)= — ;sm(wk_ \Pottk—1— @) +uher IF 10PN < < gEPENC L (13.28)

4d » 4d
u(t) = — ;sin(w‘,;“_ \Potts—1—) — — Fer i t>erpected 1§ (13.29)
4d . - 4d . expecte

u(t) = — Fsm[w;fil(z+zoff,k) —)= — e 1< e _s (13.30)

2 Enhanced Frequency Response Estimator to Guarantee Pre-specified Phase Angle and Static Disturbance Rejection
with All Harmonics Removed, Sung and Lee, Korean Journal of Chemical Engineering Copyright ©[2008] Korean
Institute of Chemical Engineers.

388 Process Identification and PID Control

When y(7) < yr (positive input status):

4d . n . expecte
u(t) = Xsm[wzfl(t— fone) — @] +ttrer i £ < £GP (13.31)
4d on - ¢ expected expected

M([) = FSIH(wkflpon,kfl _¢)+uref if toff <t < toff +6 (1332)
4d 4d

u(t) = —sin(@p | Pong—1 = ¢) + — F e if 1> fepected g (13.33)
4d 4d

u(t) = —sin[w" (1 = tong) =] + — +uer if1 < fexpected _ g (13.34)

where wszI = TE/Poff_k, 1s wZILl = TE/Pon,kf 1s lf,ﬁpwed = toff,k +P0ff,k71 and tz}f(gected =

Tonk + Ponjg—1. Postx—1 and P,y ;1 denote the time-length of the half-cycle in the previous
(k— 1)-th cycle corresponding to the negative input status and the positive input status
respectively. ., x is defined as the time at which the process input changes from the negative
input status to the positive input status, which is the start of the on status of the kth cycle.
The negative input status of the kth cycle starts at fog s tf)’;pec‘ed = lofi k + Pofrx—1 and
o ected _ fonk + Ponk —1 are the expected subsequent 7,, and Z.s on the basis of the previous
half-periods of Pogs—; and Py, x—1. —T + ¢ corresponds to the prespecified phase angle
between the process input and the process output. 6 in (13.29), (13.30), (13.33) or (13.34) is a
small positive value to prevent undesirable activation due to uncertainties. Because the
magnitude of the fundamental frequency term of the relay mode is 4d/n, we choose the
magnitude of the sinusoidal signal of 4d/r for the smoothing transit from the conventional relay
mode to the sinusoidal mode without changing the magnitude of the fundamental frequency
term.

Let us explain the role of each equation from (13.27) to (13.34). If the process reaches a
cyclic steady state (that is, Py x—1 = Pogrx and Pop x—1 = Pon i), then only (13.27) and (13.31)
will be activated. It is clear that u(#) of (13.27) or (13.31) has no harmonics and the phase angle
between u(¢) and y(¢) is exactly —mt + ¢ in the cyclic steady state. Then, it is straightforward to
estimate the exact frequency model, of which the phase angle is exactly —t + .

When the continuous cycling of the process input/output deviates from the desired cyclic
steady state, Relay_SS forces the continuous cycling to go back to the desired position by
adding the additional step signals of 4d/r to the sinusoidal signals, as shown in (13.29), (13.30)
and (13.33), (13.34). For simplicity, assume 6 =0 and consider the mechanisms shown in
Figure 13.5.

If y(t) > yerand > zggpecled (that is, the process output has not crossed the reference value
yet, although it is expected to cross at 1 = (&Pected) then the time-length corresponding to the
positive status of the process output should be shortened. This can be achieved by simply
adding a negative additional signal of —4d/m (which corresponds to the negative pulse in
Figure 13.5a) to the process input, as shown in (13.29) and Figure 13.5a. Also, the time-length
of the negative status of the process output can be shortened by adding the positive additional
signal of 4d/m (which corresponds to the positive pulse in Figure 13.5b) to the process input,

Modifications of Relay Feedback Methods

389

1.5

1

process input
process output
reference value

texpected

on \..
heS Q

......

1.5

foft & -0.5 -
e T i process input
-1 ot g T L 4 14 process output -
—— reference value
-1.5 L -1.5 L !
0.5 1.5 0 0.5 1 1.5
time time
(a) (b)
15 15 T T
.......... process input texpected
1 1k Pon,k—1 off
process output >

reference value

texpected T
on

time

(©

1.5

process output i
reference value | *

0.5 1
time

(d)

1.5

Figure 13.5 Mechanisms to achieve a cyclic steady-state. Enhanced Frequency Response Estimator to
Guarantee Pre-specified Phase Angle and Static Disturbance Rejection with All Harmonics Removed,
Sung and Lee, Korean Journal of Chemical Engineering Copyright ©[2008] Korean Institute of Chemical
Engineers.

as shown in (13.33) and Figure 13.5b. This is the same principle as used in the conventional
relay feedback method, which shortens the time-length of the positive status of the process
output cycle by entering a negative process input, and vice versa.

If y(£) <yrer and ¢ < tgﬁpec“’d (that is, the process output crosses the reference value earlier
than expected), then the time-length corresponding to the positive status of the process output
will be lengthened by adding a positive additional signal of 4d/mt (which corresponds to the
positive pulse in Figure 13.5¢) to the process input, as shown in (13.34) and Figure 13.5¢c. The
same mechanism is applied to the opposite case, as shown in Figure 13.5d.

Equations (13.28) and (13.32) of the proposed method are to prevent undesirable activation
of (13.29), (13.30) and (13.33), (13.34) due to cycle-to-cycle uncertainties, such as measure-
ment noise and high-frequency disturbances. 6 will be a small positive value. If the overload of
the actuator is of no concern, then (13.28) and (13.32) can be removed.

Urer 18 updated in each cycle by uei(k) = tref(k — 1) + adIT)(Pon(k — 1) — Pog(k — 1))/
P(k — 1), which shifts u,.r as much as the magnitude of the zero-frequency quantity to reject

390 Process Identification and PID Control

the effects of the disturbance and to obtain a symmetric input signal. Here, P,,(k — 1) and
P,¢(k — 1) are the time-lengths corresponding to the positive status and the negative status
of the process input signal respectively. P(k — 1) = Py,(k — 1) + Pop(k — 1) corresponds to
the time-length of the (k — 1)-th cycle and (2d/m)(Pon(k — 1) — Poge(k — 1))/P(k — 1) is the
time-average value (equivalently, the zero-frequency quantity) of the previous cycle. Note
that (2d/mt)(Pon(k — 1) — Pog(k — 1))/P(k — 1) monotonically decreases as the process input
uer + D increases, where D is the input static disturbance. So, the update ue(k) — ter
(k—1)=aRd/m)(Poy(k — 1) — Pose(k — 1))/P(k — 1) will remove the effect of the static
input disturbance (equivalently, making u,.s + D =0), resulting in symmetric responses
of the process input and output. The convergence of the update method will be discussed in
the next section.

In this research, it is recommended that « = 1.5 exp[—(n. — 1)/7,]. Here, n is the number of
the sinusoidal cycles. t, determines the convergence rate of u..;. A small 7, means a fast
convergence, but too small a 7, will not provide enough time for u,.¢ to converge to the right
value. Therefore, 3 <1, <5 is recommended. Roughly speaking, this requires four to six
cycles to obtain symmetric process input and output. A typical performance is shown in
Figure 13.4b with 7, = 3. Here, the reference value of the process output is 0.5. It confirms
Relay_SS provides the symmetric cycle for the nonzero reference value. Previous relay
feedback approaches cannot provide the symmetric cycle for the nonzero reference value if
they have no mechanism to reject static disturbances.

From the activated process data by Relay_SS, the frequency data can be estimated in a
straightforward manner. Because the process output in the cyclic steady state is y(¢) =
asin(wt) + yr for the process input u(f) =4dsin[wt — (—1 + ¢)]/T + e, the identified
frequency data of the process is

Ta

|G(iw)| = i’ /G(iw) = —n+¢ (13.35)
where a is the measured oscillation magnitude of the process output.

Relay_SS removes the effects of static disturbances and provides the oscillation correspond-

ing to the prespecified phase angle. Also, it can remove harmonics completely, resulting in

exact frequency-response estimates of (13.35).

13.2.1 Discussions on Convergence

There are insurmountable limitations in proving the convergence in a rigorous way for all
the possible situations in operating Relay_SS. So, discussion of the convergence of
Relay_SS will be confined to the two restricted situations of Case 1 and Case 2 with several
assumptions.

Case 1 Assume that there is no entry of static disturbances (no update of u..r) and that a small
perturbation is added to the amplitude or frequency of the signal during the cyclic-steady-state
operation. The necessary condition (Loeb condition) for a stable limit cycle in Case 1 is
(Atherton, 1975)

>0 (13.36)

W=

oo _avar
Ow 0a Ow Oa

Modifications of Relay Feedback Methods 391

where G(iw) = U(w) + iV(w) and —1/N(a) = P(a) + iQ(a). w. is the frequency of the cycle.
N(a) is the describing function of Relay_SS. It is clear that N(a) = (4d/ma) exp(—i¢) because it
generates the output u(t) = (4d/m) sin(wt — ¢) for the input —y(¢) = a sin(w?) and the effects of
the additional signals are negligible for such a small perturbation. Then, P(a) = —(ma/4d) cos
(¢) and Q(a) = —(mwaldd) sin(¢p). Then, (13.36) becomes

o0Umsin(¢p) 0V mcos(¢)
(aw 2 dw 4d)

>0 (13.37)

W=

We know that cos(¢b) and sin(¢p) are always positive because 0 < ¢ < /2. Note that most
processes for 0 < ¢ <m/2 (equivalently, —1/2 < /G(iw) < —m) are one of the two cases 0U/
owl,_,, <0,0V/ow|,_, >0anddU/0w|,_, >0,0V/0w|,_, >0because the imaginary part
V of most processes increases as w increases. It is clear that the first case of 0U /0w|,,_,, <0
and 0V/dw|,,_,, >0 satisfies (13.37).

Equation (13.37) can be rewritten for the second case of 0U/0w|,_, >0 and 0V/
0w|,_,, >0:

EBV/6L¢)|w:wC

@n(®)< 50 /2l

(13.38)

Consider Figure 13.6. Here, tan(¢) = (0V/dw|,,_,,)/(0U/0w|,_,,) and tan(¢) = U(w.)/
V(wc). Most processes satisfy ¢ < ¢ for a small ¢, and equivalently (13.38). Now, it is proven
that the proposed test signal generator in Case 1 provides a stable limit cycle for most processes.

Case 2 Assume the situation that a static disturbance enters during the cyclic-steady-state
operation and that u,.f is updated. The update method can be expressed as in Figure 13.7.

Figure 13.6 ¢ > ¢ for most processes. Enhanced Frequency Response Estimator to Guarantee Pre-
specified Phase Angle and Static Disturbance Rejection with All Harmonics Removed, Sung and Lee,
Korean Journal of Chemical Engineering Copyright ©[2008] Korean Institute of Chemical Engineers.

392 Process Identification and PID Control

z
Measurement 1—z1

A
Uref (k)

Overall Process
D
Yref + ¥ + X u(t) y(t)
»(—()_ Gy(s) >
- + + i
(a)
O X T T T T
AY
.\
N
—0.02 N e e]
—004F \% 1
= 1 e e eeeaeeeeEeeEEseecissssssssssssssssssssssssssssssssas
N
-0.06 - 7
—wme-m- Ue+D = 0.05 [
—008 L ECEET TEr uref+D = 010 -
Ure+D = 0.15
_01 1 1 1 1
0 2 4 6 8 10

k, cycle number

(b)

Figure 13.7 u,..r update method (a) and a typical step response (b). Enhanced Frequency Response
Estimator to Guarantee Pre-specified Phase Angle and Static Disturbance Rejection with All Harmonics
Removed, Sung and Lee, Korean Journal of Chemical Engineering Copyright ©[2008] Korean Institute
of Chemical Engineers.

D denotes the static input disturbance. The zero-frequency quantity of the process input
Zy(k — 1) = QdIT)(Pyy(k — 1) — Pog(k — 1))/P(k — 1) can be measured from the previous
cycle. Then, the discrete-time overall process can be defined, of which input and output are
Urer(k) (or ue(k) + D) and Z,(k) respectively, as shown in Figure 13.7a. Here, assume that the
perturbation by the static disturbance is so small that the internal feedback loop inside the

Modifications of Relay Feedback Methods 393

overall process is internally stable as in Case 1. Now, note that Z,(k) is proportional to
—(urer(k) + D) around u.(k) + D=0 because the symmetricalness of the signal continu-
ously degrades as u.¢(k) + D is increased. For example, Figure 13.7b shows a typical step
response of Z,(k) for the positive step input of u.¢(k) + D. As expected, it shows a linearity
between Z,(k) and u.¢(k) + D. Now, it can be inferred that the update method would be more
stable as the gain « is decreased.

Let us derive arough range of « to stabilize the update system. Note that the step response in
Figure 13.7b reaches the steady-state within almost one cycle. This is coincident with the fact
that relay feedback methods can usually obtain a cyclic-steady-state within such a small
number of cycles (2-3 cycles). Then, Z,(k) is approximately a function of u,(k — 1) + D.
Then, a qualitative condition for convergence can be derived as discussed below with the
assumption that the approximation is valid.

Z,=ky(D + uer + Z,) is valid at the steady state, where Z, and k,, are the zero-frequency
quantity of the process output and the static gain of the process respectively. Assume kj, > 0
without loss of generality. Then, Z, = Z,/k, — D — uyis obtained. Here, Z, and Z are negative
and positive respectively for a positive D + u.sbecause u,.s + D decreases the zero-frequency
quantity of the process input while it increases that of the process output. Then, IZ,(k + 1)l is
smaller than lu..¢(k) + DI, as shown in Figure 13.7b. So, the discrete-time overall process has
the following transfer function:

Zu(2) = — 27 Bt (2) (13.39)

where it (k) = trer (k) + D and it (2) is the z-transform of @i (k). B is positive and less than
unity. The update method with a positive « has the following transfer function:

az " 1Z,(z) . et (0)

1—z-1 1—z-1

aref(z) - (1340)

Then, the following closed-loop transfer function is obtained from (13.39) and (13.40):

Zu (Z) _ - Bilref (0)

= == 13.41
l—z"'+z"2aB ()

It is straightforward to derive the condition of 0 <« < 1/8 for a stable update from (13.41).
This means that & = 1 will stabilize the closed-loop response because 3 is less than unity.

Example 13.3

The following process is simulated to confirm the performance of Relay_SS:

(zs+ 1)exp(— 0.3s)
(s+1)°

G(s) = (13.42)

Table 13.11 shows the estimated amplitude ratio and frequency corresponding to the
prespecified phase angle. As expected, the proposed method with t, =3 provides almost
exact estimates for the range —n/2 < /G(iw) < —m. If a bigger 1, is chosen and there are no
numerical errors, then Relay_SS would provide exact estimates. Table 13.12 shows the
MATLAB code for Example 13.3.

394 Process Identification and PID Control

Table 13.11 Estimated frequency responses for the SOPTD process of G,(s) = (zs + 1) exp(—0.3s)/
(s + 1) Enhanced Frequency Response Estimator to Guarantee Pre-specified Phase Angle and Static
Disturbance Rejection with All Harmonics Removed, Sung and Lee, Korean Journal of Chemical
Engineering Copyright © [2008] Korean Institute of Chemical Engineer.

/G(iw) Process (z=0.2) Relay_SS Process Relay_SS

(z=0.2) (z=-0.2) (z=-0.2)

IG(iw) () IG(iw) 1) IG(iw)) IG(iw))
- 0.079 3.884 0.079 3.876 0.225 1.940 0.226 1.936
—3n/4 0.240 1.849 0.242 1.859 0.419 1.207 0.420 1.205
—n/2 0.555 0.911 0.558 0.908 0.678 0.700 0.679 0.700

Table 13.12 MATLAB code to simulate Table 13.11.

relay_SS_exl.m
clear; tf=30.0; delt=0.01; phase=pi/4;
u=zeros (1,1000); relayl=0.0; x=zeros(2,1);
tf_k=round(tf/delt); rand(’seed’,0); noise=2* (rand(1l,tf_k)-0.5);
yref=0.2; dn=0; dis=0.0; d=1.0;
$phase angle=-pit+phase,dead_zone=dn*delt, relay magnitude=d, dis=
disturbance
alpha=3.0; nmag=0.0; hys=2*nmag+0.01; %uref updata rate,noise magnitude,
hysteresis
index_up=1; index_down=1; index_u_update=1; %no uref update-0,uref
update-1
y=0.0; yb=0.0; t_on=0.0; t_off=0.0; Pon=0.0; Poff=Pon;
amax=0; amin=0; number=-4; t_on_add=0.0; t_off _add=0.0;
off_add=0; on_add=0; sul=0.0; uref=0.0; y_delta=0.1;

for k=1:tf_k
t=(k-1)*delt;T(k)=t;Y (k)=y;U(k)=(relayl+index_u_update*uref) ;
Uref (k)=uref;Yref (k)=yref; for i=1:999 u(i)=u(i+l); end
if (number>-4 & y-yref>=hys) index_up=1; end;
if (number>-4 & y-yref<=-hys) index_down=1; end
if ((y-yref<=y_delta) & (number==-4))
relayl=d; if (y-yref>=y_delta-hys) index_up=1; number=-3; end
end
if ((y-yref>0.0) & (number==-3) & (index_down==1))
relayl=-d;number=-2; t_off=t;index_down=0;index_up=0;
end
if ((y-yref<=0.0) & (number==-2) & (index_up==1))
relayl=d;number=-1; t_on=t;index_down=0; index_up=0;
end
if ((y-yref>0.0) & (number==-1) & (index_down==1))
relayl=-d;number=0; t_off=t;Pon=t-t_on;index=0;index_down=1;
index_up=0;
end
if (number>=-1)

Modifications of Relay Feedback Methods 395

Table 13.12 (Continued)

sul=sul+relayl*delt;
if((y-yref)>=0.0 & (yb-yref)<0.0 & (index_down==1))
t_off_ expect=t_on+Pon;
if (t_off_expect-t>0.0) t_off_add=t_off_expect-t; else t_off_add=0;
end
t_off=t;Pon=t-t_on; index=0; index_down=0; index_up=0;
end
if ((y-yref)<=0.0 & (yb-yref)>0.0 & (index_up==1))
index_down=0; index_up=0;
t_on_expect=t_off+Poff; if (t_on_expect-t>0.0) t_on_add=t_on_
expect-t; else t_on_add=0; end
t_on=t; Poff=t-t_off; index=1; number=number+1;
amax_s=amax; amin_s=amin; amax=0.0; amin=0.0; P=Pon+Poff;su=sul;
if (number>=0)
w=2*pi/P; kd=1.5%* (exp (- (number-1) /3)) *su/P;
1f (kd<1l.5*d) uref=uref+kd; else uref=uref+l.5*d; end
end
sul=0.0;
end
if (amax<(y-yref)) amax=y-yref; end; if (amin> (y-yref)) amin=y-yref;
end
if (number>=1)
if (index==0)
w=pi/Poff;
if(t-t_off<t_off_add-dn*delt) off_add=-4*d*1/pi; else
off_add=0.0; end
relayl=4*d*sin (w* (t-t_off)-pi-phase) /pit+toff_add;
if (Poff<(t-t_off) & Poff+dn*delt>=(t-t_off) & (y-yref)>0.0)
relayl=4*d*sin(w*Poff-pi-phase) /pi;
end
if (Poff+dn*delt<(t-t_off) & (y-yref)>0.0)
relayl=4*d*sin (w* (t-t_off)-pi-phase) /pi-4*d/pi;
end
end
if (index==1)
w=pi/Pon;
if (t-t_on<t_on_add-dn*delt) on_add=4*d*1/pi; else on_add=0.0;
end
relayl=-4*d*sin(w* (t-t_on) -pi-phase) /pi+ton_add;
if (Pon<(t-t_on) & Pon+dn*delt>=(t-t_on) & (y-yref)<0.0)
relayl=-4*d*sin (w*Pon-pi-phase) /pi;
end
if (Pontdn*delt<(t-t_on) & (y-yref)<0.0)
relayl=-4*d*sin (w* (t-t_on) -pi-phase) /pi+4*d/pi;
end
end
end
end

396

Process Identification and PID Control

Table 13.12 (Continued)

if (t>=0) dis=0.0; end

u(1000)=relayl+index_u_update*uref+dis; yb=y;
[x,y]=g_relay_SS_exl(x,delt,u); y=ytnmag*noise(1l,k);

end

figure (3); plot(T,U0,’'g’,T,Y,’'b’,T,Yref,’'k’,T,Uref,’'r");
Period=P; w=2*pi/P; s=J*w; PA=(-pi+phase)*180/pi;
Model_AR= (amax_s-amin_s) /2/ (4*d/pi); Model_w=w;

[war]=ar_angle (phase) ;
%Process_PA= (-pi+phase) *180/pi
Process_AR=ar; Process_w=w;

AR_error=100* (Process_AR-Model_ AR)/Process_AR;

w_error=100* (Process_w-Model_w) /Process_w;

fprintf ('Model: w=%5.3f AR=%5.3f PA=%5.4f\n’,Model_w,Model_ AR, PA);
fprintf (' Process: w=%5.3f AR=%5.3f PA=%5.4f\n’,Process_w, Process_AR,

PA) ;

g_relay_SS_exl.m

function
[next_x,y]l=g_relay_SS_exl(x,delt,u);
subdelt=delt/10.0;
n=round (delt/subdelt) ;
A=[0-1; 1-2]1; B=[1; 0.2];
C=[01]; delay=0.3;
delay_k=round (delay/delt) ;
for i=1:n

dx=A*x+B*u (1000-delay_kXk);

x=x+dx*subdelt;
end
next_x=x; y=C*x;
return

command window
>>relay_SS_exl
Model: w=1.848 AR=0.232 PA=-135.0000
Process: w=1.859 AR=0.239 PA=-135.0000

ar_angle.m
function
[war]=ar_angle (phase)
w=0.0; del=0.01;
for 1=1:100000
w=w+del; s=7j*w;
[G]=process(s);
PA=angle (G) ;
if (imag(G)>0.0)
PA=-pi-2*pit+angle (G) ;
end
if (PA<(-pi+phase))
break;
end
end
a=w-del; b=wt+del;
for i=1:1000
c=(a+b)/2;
s=j*a; [G]=process(s);
PAa=angle (G) +tpi-phase;
s=j*c; [G]=process(s);
PAc=angle (G) tpi-phase;
if (PAa*PAc<0.0) b=c;
else a=c; end
if (abs (PRa)<0.0000001)
break; end
end
ar=abs (G); w=c;
return
function [G]=process(s)
G=exp (-0.3*s)* (0.2*s+1)/
(s+1)72;
return

Modifications of Relay Feedback Methods 397

Table 13.13 Comparisons of Relay_SS with previous methods in estimating the ultimate data
corresponding to /G(iw) = —mn. Enhanced Frequency Response Estimator to Guarantee Pre-specified
Phase Angle and Static Disturbance Rejection with All Harmonics Removed, Sung and Lee, Korean
Journal of Chemical Engineering Copyright ©[2008] Korean Institute of Chemical Engineers.

G(s) = exp(—60) Process Conventional Modified Relay_SS
Y s+
IGliw)l o IGliw)l © IGliw)l o IGliw)l
0=0.1 0.061 16.32 0.075 16.36 0.066 16.32 0.061 16.31
0=0.2 0.118 8.444 0.143 8.537 0.125 8.468 0.118 8.440
0=1.0 0.442 2.029 0.486 2.107 0.437 2.040 0444 2.024
0=3.0 0.774 0.819 0.746 0.856 0.792 0.821 0.776 0.818

Example 13.4
The following process is simulated to compare Relay_SS with the previous methods of the
conventional relay feedback method and Sung et al. (1995):

_ exp(— 65)

G(s) s+1

(13.43)

Equation (13.43) is chosen because it usually shows bigger modeling errors than other high-
order processes for the harmonics included in the process input. Table 13.13 shows the
estimated amplitude ratio and frequency corresponding to /G(iw) = —mn. As expected, the
proposed method provides the best estimates in most cases.

13.2.2 Concluding Remarks

Using Relay_SS to solve the harmonics problem of the previous approaches completely is
introduced. It can remove all the harmonics by using the sinusoidal signal directly, of which the
frequency is automatically updated to guarantee the desired phase angle. Relay_SS also rejects
the effects of static disturbances by adjusting the reference value of the sinusoidal signal.

Problems

13.1 Activate the process G(s) = 1/(s + 1)° using Relay_PS in Section 13.1 and estimate the
frequency response using the describing function analysis in Chapter 8.

13.2 Activate the virtual process of Process 3 (refer to the Appendix for details) using
Relay_PS in Section 13.1 and estimate the frequency response using the describing
function analysis in Chapter 8. Tune the PID controller using the ZN tuning rule and
demonstrate the control performance.

13.3 Activate the following Hammerstein nonlinear process using Relay_PS combined with
the disturbance rejection technique in Section 13.1 and estimate the ultimate frequency of
the linear dynamic subsystem and the input nonlinear function. Compare the model
output and the process output.

398 Process Identification and PID Control

v(t) = 1 —exp(—0.3u(z)) + 0.2u(r)

Ey() L dy()
ds +3 ds?

+3 dﬁ(f) (1) = 2.00(t — 0.2)

13.4 Activate the process of G(s) = 1/(s + 1)° using Relay_SS in Section 13.2 with y,.s=0.3
and estimate the frequency response for phase angles of —m, —3m/4, —n/2 using the
describing function analysis in Chapter 8.

13.5 Activate the virtual process of Process 3 (refer to the Appendix for details) using
Relay_SS in Section 13.2 with y;=0.3 and phase angle of —m and estimate the
frequency response using the describing function analysis in Chapter 8. Tune the PID
controller using the ZN tuning rule and demonstrate the control performance.

References

Atherton, D.P. (1975) Nonlinear Control Engineering, Van Nostrand Reinhold, London.

Je, C.H,, Lee, J., Sung, S.W. and Lee, D.H. (2009) Enhanced process activation method to remove harmonics and input
nonlinearity. Journal of Process Control, 19, 353.

Lee, T.H., Wang, Q.G. and Tan, K.K. (1995) A modified relay-based technique for improved critical point estimation in
process control. IEEE Transactions on Control Systems Technology, 3, 330.

Park, J.H., Sung, S.W. and Lee, I. (1997) Improved relay auto-tuning with static load disturbance. Automatica, 33, 711.

Park, H.C., Sung, S.W. and Lee, J. (2006) Modeling of Hammerstein—Wiener processes with special input test signals.
Industrial & Engineering Chemistry Research, 45, 1029.

Shen, S., Yu, H. and Yu, C. (1996) Use of saturation-relay feedback for autotune identification. Chemical Engineering
Science, 51, 1187.

Sung, S.W. and Lee, J. (2006) Relay feedback method under nonlinearity and static disturbance conditions. Industrial
& Engineering Chemistry Research, 45, 4028.

Sung, S.W. and Lee, J. (2008) Enhanced frequency response estimator to guarantee pre-specified phase angle and static
disturbance rejection with all harmonics removed. Korean Journal of Chemical Engineering, 25, 1273.

Sung, S.W., Park, J.H. and Lee, 1. (1995) Modified relay feedback method. Industrial & Engineering Chemistry
Research, 34, 4133.

Tan, K.K.,Lee, T.H., Huang, S. et al. (2006) Improved critical point estimation using a preload relay. Journal of Process
Control, 16, 445.

Appendix
Use of Virtual Control System

A virtual control system composed of a user’s MATLAB codes and virtual processes is used to
emulate real situations in industry. This can contribute significantly to improving the ability to
solve real problems in industry. Students can practice the whole procedure of process
activation, modeling, controller design and implementation on the basis of a virtual control
system. This appendix introduces the virtual control system and several examples of user
codes.

A.1 Setup of the Virtual Control System

The overview, installation and setting the parameters of the virtual control system are briefly
explained in this section.

A. 1.1 Overview

The virtual control system is composed of a buffer, a user’s code and a virtual process.
Figure A.1 shows a schematic diagram for data exchange between the user’s code and the
virtual process.

user’s code virtual process

ut) \. u(t)

period: sampling time period: scan time

Figure A.1 Schemetic diagram of the virtual control system.

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
© 2009 John Wiley & Sons (Asia) Pte Ltd

400 Process Identification and PID Control

The virtual process is coded using Visual Basic and the user’s code is a MATLAB m-file. The
buffer is one of several forms of database, Excel, clipboard and data file, of which the role is
temporal data storage to incorporate the data exchange between the user’s code and the virtual
process. The user’s code periodically sends the control output u(¢) to the buffer and gets the time
t and the process output y(#) from the buffer with the period of the sampling time. The virtual
process periodically sends ¢ and y(¢) to the buffer and gets u(7) from the buffer with the period of
the scan time. The sampling time should be larger than the scan time. Also, it is recommended
to choose the sampling time as a multiple of the scan time.

A.1.2 Installation

Installation of the virtual control system is very simple. Just double click on Setup.exe in the
package directory and input the directory name into which all the files are extracted. Let us call
the directory “virtual system directory.” To run the virtual control system, click on the Windows
start menu and choose the virtual control system or double click on Virtual Processes.exe in the
virtual system directory. MATLAB functions (get_t, get_y and set_u) for the data exchange
between the user’s code and the virtual process are provided in the virtual system directory so
that the user can exchange their data with the virtual processes easily without knowing the
details of the system. The present working directory of MATLAB should be the virtual system
directory. Also, the user’s code should be placed in the virtual system directory. If the user wants
to use another directory, then they should make sure that all the files in the virtual system
directory are placed in the directory and double click on the Virtual Processes.exe to run the
virtual processes (do not use the Windows start menu in this case).

A.1.3 Setting the Virtual Processes

Figure A.2 shows the virtual processes. The user can choose one of the available virtual
processes from the menu in Figure A.2a. Figure A.2b shows the chosen virtual process. If the
user clicks on the button again, the virtual process will be reset and restarted.

The user can set the parameters of the virtual process, such as the upper limit and lower limit
of the process input, the scan time and scaling of the axes by inputting a numeric value to the
text box and clicking on the Press to Set button.

A.2 Examples

Several examples of user codes are introduced to demonstrate how to use the virtual control
system.

A.2.1 Process Activation Using a Step Signal

Table A.1 shows the user’'s MATLAB code to activate a virtual process using a step signal
u(t) =3 for 20 < tand u(r) = 1 for < 20. Figure A.3 shows the dynamic behavior of the virtual
control system for the step input test. The process output measured by the user’s code in
Table A.1 and the process input set by the user’s code are shown in Figure A.4.

Appendix Use of Virtual Control System 401

w Virtual System [Z]@@
Wecome to Real-time
Virtual Control System !!!

—Choose one of the following virtual processes

& Pro " Process 2 ¢ Process3 ¢ Process d

" Process B ¢ Processb (Process7? ¢ Process 8

(a)
= Virtual Process | E|
Process and Contral Output Set Limits of u(t) and Scan Time | Set Scaling of Axes Execute Process

t mEEm | PresstosSet | Press to Set Start/Reset
yit 7000 Upper limit 760,60 Scan Time x-axis (00— ~ (3000
w) [O0 || Lowerlmiionm — O0 s [TT— ~ [End
500 A

440 A

380 A

320 A

260 A

200 A

.40 o

080 A+

020 A

-0.40 A

-1,00 T T T T T T T T T 1

0.00 30,00 60.00 90.00 120,00 150,00 18000 21000 24000 27000 30000

(b)

Figure A.2 Virtual control system: (a) menu to select the virtual process; (b) selected virtual process.

402 Process Identification and PID Control

Table A.1 User's MATLAB code to activate a virtual process using a step signal.

my_step_test.m
function [data_t data_y data_ul=my_step_test (tf)
sampling_time =0.5; $sampling time
[t]l=get_t(); $time reading
n_tf=round (tf/sampling_time); t_ref=t; i=0;
while t<=tf
[t]l=get_t(); % Time reading
delt=t-t_ref;
if (delt>=sampling_time*0.99)
i=i+1; t_ref=t;
% Beginning of my control algorithm
[yl=get_y(); %$process output reading
1£(20.0<=t) u=3.0; elseu=1.0; end % controller output
set_u(u); % Control output sending
% End of my control algorithm
data_t(i)=t; data_u(i)=u; data_y(i)=y; % data storage
end
end
figure (1) ; plot(data_t,data_y);
figure (2); plot(data_t,data_u);

command widow
>> [data_t data_y data_ul=my_step_test (100);

= Virtual Process |

~Process and Control Qutput Set Limits of u(t) and Scan Time Set Scaling of Axes
t EAL Press to Set | Press to Set |
yit) 7.000 Upper I:mil[maﬁﬁ' ?Jc;un Time xeaxis [0 ~ [000
t irnit[- . :
w) o || Lowerlimit-io000 yaie 00— =[G
500 A
450 A
40 A o
—
I'/
350 ; /
300 o 7
//’
280 A o
20 4
150
1.00
080 o
0,00 T T T T T T T T T 1
0.00 15,00 30,00 45,00 60,00 .00 90.00 105,00 120,00 135,00 150,00

Figure A.3 Response of the virtual process for the step input test.

Appendix Use of Virtual Control System 403

4.5 T T T T

4+

3.5} R

= 3t i

25} R

2+ -

1 5 1 1 1 1
0 20 40 60 80 100

3.5 T T T T

25} R

u(t)
N

05 1 1 1 1
0 20 40 60 80 100

t

Figure A.4 The process output and the process input obtained by the user’'s MATLAB code in Table A.1.

Table A.2 User's MATLAB code to control a virtual process using a PID controller.

my_pid.m
function [data_t data_y data_ul=my_pid(tf)
sampling_time =0.5;
[tl=get_t(); $Time reading
n_tf=round(tf/sampling_time); t_ref=t; i=0;

[ybl=get_y(); %$process output reading
kc=1.2; £ti=10.0; td=6.0; s=1.0; ysb=2.0;
while t<=tf
[tl=get_t(); % Time reading
delt=t-t_ref;
if (delt>=sampling_time*0.99)
i=i+1; t_ref=t;

(continued)

404 Process Identification and PID Control

Table A.2 (Continued)

% Beginning of my control algorithm
[yl=get_y(); $process output reading
if(20.0<=t) ys=3.0; else ys=2.0; end % setpoint
s=s+kc* (ys-y) *delt/ti;
u=kc* (ys-y) +s+kc*td* ((ys-y) - (ysb-yb)) /delt; $control output
ysb=ys; yb=y;
set_u(u); % Control output sending
% End of my control algorithm
data_t(i)=t; data_u(i)=u; data_y(i)=y; % data storage
end
end
figure (1) ; plot(data_t,data_y);
figure (2); plot(data_t,data_u);

command widow
>> [data_t data_y data_ul=my_pid(150);

= Virtual Process | X
~Process and Control Qutput—, - Set Limits of u(t) and Scan Time | —Set Scaling of Axes Execute Process
t Ma3s Press to Set | Press to Set | _'|
y:l) [Fooo UL:per I:mt:‘ﬁ'ﬁgfﬁﬁ’_ ?Jc;un Time xeaxis [0 ~ (6000 =
utt) [wer limit[-1p0 00 : ;
T y-axis [0 ~ [500
500 A
450 A
400 A
350 A~
300 et
rd
2.0 A«
150
1.00
080 o
0,00 T T T T T T T T T 1
0.00 15,00 30,00 45,00 60,00 .00 90.00 105,00 120,00 135,00 150,00

Figure A.5 Response of the virtual process for the PID controller.

Appendix Use of Virtual Control System 405

3.5 T T

y(t)

25} E

1
0 50 100 150

u(t)
N

1
0 50 100 150
t

Figure A.6 The process output and the process input obtained by the user’'s MATLAB code in Table A.2.

A.2.2 Process Control Using a Proportional-Integral-Derivative Controller

Table A.2 shows the user’s MATLAB code to control a virtual process using a PID controller for
which the parameters are k. =1.2, 7;=10.0 and 74 = 6.0 and the setpoint is 3.0 for 20 <t.
Figure A.5 shows the response of the virtual processes for the PID controller. The process
output measured by the user’s code in Table A.2 and the process input set by the user’s code are
shown in Figure A.6.

A.2.3 Process Activation Using the Relay Feedback Method

Table A.3 shows the user’'s MATLAB code to activate a virtual process using the relay feedback
method with u(#) =3 for y(¢) < 2.0 and u(#) =0 for y(#) > 2.0. The relay feedback starts at
20.0 < 1. Figure A.7 shows the response of the virtual processes for the relay feedback method.
The process output measured by the user’s code in Table A.3 and the process input set by the
user’s code are shown in Figure A.8.

406 Process Identification and PID Control

Table A.3 User's MATLAB code to activate a virtual process using the relay feedback method.

my_rlay.m
function [data_t data_y data_u]l=my_relay (tf)
sampling_time =0.5;
[tl=get_t(); $Time reading
n_tf=round(tf/sampling_time); t_ref=t; i=0;

while t<=tf
[t]=get_t(); % Time reading
delt=t-t_ref;
if (delt>=sampling_time*0.99)
i=i+1; t_ref=t;
% Beginning of my control algorithm
[yl=get_y(); $process output reading
1f (t>20.0)
if(3.0<=y) u=0.0; elseu=3.0; end % relay
else
u=1.0;
end
set_u(u); % Control output sending
% End of my control algorithm
data_t(i)=t; data_u(i)=u; data_y(i)=y; % data storage
end
end
figure (1) ; plot(data_t,data_y);
figure (2); plot(data_t,data_u);

command widow
>> [data_t data_y data_ul=my_relay(150);

Appendix Use of Virtual Control System 407
= Virtual Process | 3]
~Process and Control Qutput - - Set Limits of u(t) and Scan Time | Set Scaling of Axes | Execute Process -

t X Press to Set | Press to Set |

Upper limit Scan T : —— —

yit) [28i2 pper :m“nﬁm_ 'J:‘;Jn me w-axis [000 ~ [f50.00 =
w) [Foa || Lowerlimit-io00 et [T = |
500 -

440

380 A

32 A ,—\ /—\\ /—\ —

- \ e \
260 ya A \/ \
/s M

2.00

1.40

DE0 o

D20 -

-0.40 A

-1.00 T T T T T T T T T 1

0.00 15,00 3000 45.00 £0.00 7,00 90.00 10500 12000 13500 150,00

Figure A.7 Response of the virtual process for the relay feedback method.

408

Process Identification and PID Control

3.5 T T
3L
ES
25
2 1
0 50 100 150
t
3F 4
oL 4
E
1+ — 4
0r L
1 1
0 50 100 150
t

Figure A.8 The process output and the process input obtained by the user’'s MATLAB code in Table A.3.

Index

amplitude ratio, 95, 98, 241, 243, 246, 267,
268, 338
anti-derivative kick, 141
anti-windup, 130
conditional integration, 131
back-calculation, 134
Autoregressive Exogenous Input (ARX) model,
317, 319
autotuning, 241

back-calculation, 134
biased-relay, 248, 250, 351
bisection method, 64, 98
Black-box model, 4-5
block diagram, 92

bode plot, 99, 203, 207
bode stability, 203

cascade control, 187, 215
design (tuning), 187
primary controller, 215
secondary controller, 215
characteristic equation, 202, 219, 223
closed-loop
control system, 57, 83, 201
transfer function, 201
commercial PID controllers, 135
conditional integration, 131
continuous-cycling method, 154
continuous-time, 275, 337
controlled variables, 3
convolution theorem, 24
critical frequency, 203

critically damped process, 82
cyclic-steady-state, 5, 95, 240, 250, 346

damping factor, 82

decay ratio, 83

decoupled control structure, 220
derivative kick, 141

derivative time, 112

describing function analysis, 241, 377
deviation variable, 7

difference equation, 317

differential equation, 4, 20, 29, 31, 35, 45, 275
discrete-time, 317, 337

dynamic behaviors, 79

equivalent gain plus time delay, 220
equivalent time delay, 175
Euler formula, 88, 89, 96
Euler method, 47, 69, 113

first order plus time delay (FOPTD), 79, 84, 159,
161, 174, 339
frequency response, 19, 94, 99, 157, 170, 235,
240, 247, 250, 263, 338, 367
amplitude ratio, 95, 98, 241, 243, 246, 267,
268, 338
phase angle, 95, 99, 174, 241, 243, 338, 368
frequency response analysis, 240, 261
Fourier analysis, 247
Fourier series, 235

gain crossover frequency, 203, 210
gain margin, 210
gain scheduling, 225

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee

© 2009 John Wiley & Sons (Asia) Pte Ltd

410

Index

Hammerstein process, 382

IMC tuning rule, 159
implementation, 113

impulse function, 21

integral time, 112

integral transform, 275

integral windup, 129

integrating process, 91, 126, 197, 227
interacting PID controller, 137
internal feedback loop, 188, 215, 227
interval having method, 70, 321, 328
inverse Laplace transform, 16, 26
inverse response, 91

ITAE-1 tuning rule, 161

ITAE-2 tuning rule, 167

laplace transform, 16
least squares method, 59, 173, 176, 277, 281,
320, 338, 358
left-half-plane (LHP) pole, 90
Levenberg-Marquardt method, 72, 297, 326
linear process, 9
time-invariant, 9
time-variant, 9
linearization, 13
low order plus time delay process, 79
first order plus time delay (FOPTD), 79, 84,
159, 161, 174, 339
second order plus time delay (SOPTD),
82, 166, 169, 171, 175, 231

manipulating variables, 3—4

margin
phase, 210
gain, 210

marginally stable, 154, 203-204, 243
model conversion, 337

modeling error, 219

model reduction, 170, 338

modified Fourier transform, 250

Newton-Raphson method, 65
noise suppressing PID controller, 141
non-interacting PID controller, 135
numerical

analysis, 59

derivative, 45, 59, 68, 113,

301, 326
integration, 68, 112, 247, 253, 276

Nyquist plot, 99, 207
Nyquist stability, 207

offset, 124, 153, 219, 229
open-loop stable process, 91, 97, 122, 153, 230
open-loop transfer function, 201, 203, 207
open-loop unstable process, 91
optimal gain margin tuning rule, 169
optimization method, 69
interval having method, 70, 321, 328
Levenberg-Marquardt method, 72, 297, 326
output error (OE) model, 318, 325
over-damped process, 82
overshoot, 83

Padé approximation, 25
parallel PID controllers, 138
partial fraction, 26
periodic function, 25, 235, 248, 254
phase angle, 95, 99, 174, 241, 243, 338, 368
phase crossover frequency, 204
phase margin, 210
PID controllers, 111
commercial PID, 135
derivative time, 112
implementation, 113
integral time, 112
interacting PID, 137
noise suppressing PID, 141
non-interacting PID, 135
parallel PID, 138
proportional band, 112
setpoint, 112
two-degree-of-freedom PID, 140
unified structure of PID, 145
PID controller tuning, 151
IMC tuning rule, 159
ITAE-1 tuning rule, 161
ITAE-2 tuning rule, 167
modeling error, 196
model reduction, 170
optimal gain margin tuning rule, 169
trial and error tuning, 151
Ziegler-Nichols tuning, 157
poles, 86
prediction error identification method, 291, 319,
325
prediction model
ARX model, 317
OE model, 318

Index

411

primary controller, 215
process activation, 343, 373, 387, 400
process control, 3
controlled variables, 3—4
manipulating variables, 3—4
process input, 3—4
process output, 3—4
process identification, 4
black-box model, 4-5
methods, 154, 235, 275, 317
process input, 3
process output, 3
process reaction curve method, 84, 157
proportional band, 112
proportional gain, 112
pulse signals, 373

relay feedback, 157, 240, 243, 248, 250, 263,
287, 345, 351, 373, 405
biased, 248, 250, 287, 351
large range of operation, 365
modifications, 373
nonlinearity and disturbance, 357
static disturbance, 352
two-channel, 244
unbiased, 345
right-half-plane (RHP) pole, 90, 207
root-finding method, 63
bisection, 63
Newton-Raphson, 65

saturation, 129

secondary controller, 215

second order plus time delay (SOPTD), 82, 166,
169, 171, 175, 231, 339

setpoint, 112

settling time, 83

simulations, 45

sine signal, 387

Smith predictor, 217

stable poles, 90

state space, 32, 48, 114, 292

static gain, 79, 82, 97, 153
steady-state, 5, 7, 253, 275

step function, 21

step response, 81, 82, 85, 91
superposition rule, 11, 34, 94, 97, 202

Taylor series approximation, 13, 14, 25, 175

time constant, 79, 82

time delay, 10, 21, 25, 50, 79, 82, 85, 217, 245,
320, 325, 327

time delay compensator, 217

time-invariant linear process, 9

time-variant linear process, 9

transfer function, 33, 86, 92, 95, 113, 201,
241, 337

trial and error tuning, 151

two-degree-of-freedom PID controller, 140

two-channel-relay, 244

ultimate
amplitude ratio, 97, 156
frequency, 98, 154, 157, 174, 176, 241, 244,
264, 339, 347, 377
gain, 98, 154, 157, 188, 241, 244, 264, 377
unbiased-relay, 345
under-damped process, 83
unified structure of PID controller, 145
uniformly distributed random noise, 120, 287,
304, 358, 360
unstable poles, 90
unstable process, 91, 169, 175, 188, 197, 227
unsteady state, 278

virtual process, 104, 149, 198, 272, 273, 316,
336, 342, 371, 397, 398, 399

weight, 281, 283
Weiner process, 360

zeroes, 86, 91, 175
Ziegler-Nichols tuning, 157
z-transform, 337, 393

	PROCESS IDENTIFICATION AND PID CONTROL
	Contents
	Preface
	Part One: Basics of Process Dynamics
	1 Mathematical Representations of Linear Processes
	1.1 Introduction to Process Control and Identification
	1.2 Properties of Linear Processes
	1.3 Laplace Transform
	1.4 Transfer Function and State-Space Systems
	Problems

	2 Simulations
	2.1 Simulating Processes Composed of Differential Equations
	2.2 Simulating Processes Including Time Delay
	2.3 Simulating Closed-Loop Control Systems
	2.4 Useful Numerical Analysis Methods
	Problems

	3 Dynamic Behavior of Linear Processes
	3.1 Low-Order Plus Time-Delay Processes
	3.2 Process Reaction Curve Method
	3.3 Poles and Zeroes
	3.4 Block Diagram
	3.5 Frequency Responses
	Problems

	Part Two: Process Control
	4 Proportional–Integral–Derivative Control
	4.1 Structure of Proportional–Integral–Derivative Controllers and Implementation in Computers/Microprocessors
	4.2 Roles of Three Parts of Proportional–Integral–Derivative Controllers
	4.3 Integral Windup
	4.4 Commercial Proportional–Integral–Derivative Controllers
	Problems

	5 Proportional–Integral–Derivative Controller Tuning
	5.1 Trial-and-Error Tuning
	5.2 Simple Process Identification Methods
	5.3 Ziegler–Nichols Tuning Rule
	5.4 Internal Model Control Tuning Rule
	5.5 Integral of the Time-Weighted Absolute Value of the Error Tuning Rule for a First-Order Plus Time-Delay Model (ITAE-1)
	5.6 Integral of the Time-Weighted Absolute Value of the Error Tuning Rule for a Second-Order Plus Time-Delay Model (ITAE-2)
	5.7 Optimal Gain Margin Tuning Rule for an Unstable Second-Order Plus Time-Delay Model (OGM-unstable)
	5.8 Model Reduction Method for Proportional–Integral–Derivative Controller Tuning
	5.9 Consideration of Modeling Errors
	5.10 Concluding Remarks
	Problems

	6 Dynamic Behavior of Closed-Loop Control Systems
	6.1 Closed-Loop Transfer Function and Characteristic Equation
	6.2 Bode Stability Criterion
	6.3 Nyquist Stability Criterion
	6.4 Gain Margin and Phase Margin
	Problems

	7 Enhanced Control Strategies
	7.1 Cascade Control
	7.2 Time-Delay Compensators
	7.3 Gain Scheduling
	7.4 Proportional–Integral–Derivative Control using Internal Feedback Loop
	Problems

	Part Three: Process Identification
	8 Process Identification Methods for Frequency Response Models
	8.1 Fourier Series
	8.2 Frequency Response Analysis and Autotuning
	8.3 Describing Function Analysis
	8.4 Fourier Analysis
	8.5 Modified Fourier Transform
	8.6 Frequency Response Analysis with Integrals
	Problems

	9 Process Identification Methods for Continuous-Time Differential Equation Models
	9.1 Identification Methods Using Integral Transforms
	9.2 Prediction Error Identification Method
	Problems

	10 Process Identification Methods for Discrete-Time Difference Equation Models
	10.1 Prediction Models: Autoregressive Exogenous Input Model and Output Error Model
	10.2 Prediction Error Identification Method for the Autoregressive Exogenous Input Model
	10.3 Prediction Error Identification Method for the Output Error Model
	10.4 Concluding Remarks
	Problems

	11 Model Conversion from Discrete-Time toContinuous-Time Linear Models
	11.1 Transfer Function of Discrete-Time Processes
	11.2 Frequency Responses of Discrete-Time Processes and Model Conversion
	Problems

	Part Four: Process Activation
	12 Relay Feedback Methods
	12.1 Conventional Relay Feedback Methods
	12.2 Relay Feedback Method to Reject Static Disturbances
	12.3 Relay Feedback Method under Nonlinearity and Static Disturbances
	12.4 Relay Feedback Method for a Large Range of Operation
	Problems

	13 Modifications of Relay Feedback Methods
	13.1 Process Activation Method Using Pulse Signals
	13.2 Process Activation Method Using Sine Signals
	Problems

	Appendix: Use of Virtual Control System
	A.1 Setup of the Virtual Control System
	A.2 Examples

	Index

